フィルターのクリア

How to divide a polynomial into two polynomials, one with the odd coefficients of w and the other with the even coefficients of w?

3 ビュー (過去 30 日間)
I have the polynomial p(w) described below and I need to split it into two polynomials one with odd coefficients of w and the other with even coefficients of w, how can I do that?
P(w) = 25*ki - w^4*(kd + 1) + w*(25*kp - 1)*1i + w^3*(kp + 33/5)*1i + w^2*(ki - 25*kd + 41/5)
  3 件のコメント
Torsten
Torsten 2022 年 10 月 24 日
Not necessary - the polynomial is in w, not kp.
Alex Muniz
Alex Muniz 2022 年 10 月 24 日
kp is a constant. The polynomial is a function of w.
I would like two polynomials as follows:
P(w) = 25*ki - w^4*(kd + 1) + w*(25*kp - 1)*1i + w^3*(kp + 33/5)*1i + w^2*( ki - 25*kd + 41/5)
P(w) = P_odd(w) + P_even(w)
P_odd(w) = w^3*(kp + 33/5)*1i + w*(25*kp - 1)*1i
P_even(w) = -w^4*(kd + 1) + w^2*( ki - 25*kd + 41/5) + 25*ki

サインインしてコメントする。

採用された回答

Torsten
Torsten 2022 年 10 月 24 日
編集済み: Torsten 2022 年 10 月 24 日
Odd part:
(P(w) - P(-w))/2
Even part:
(P(w) + P(-w))/2
syms w kd ki kp
P(w) = 25*ki - w^4*(kd + 1) + w*(25*kp - 1)*1i + w^3*(kp + 33/5)*1i + w^2*( ki - 25*kd + 41/5);
P_odd(w) = (P(w)-P(-w))/2
P_odd(w) = 
P_even(w) = (P(w) + P(-w))/2
P_even(w) = 
P_odd(w) + P_even(w) - P(w)
ans = 
0

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangePolynomials についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by