Inconsistency of the figure and value on the curve

2 ビュー (過去 30 日間)
M
M 2022 年 10 月 17 日
コメント済み: Paul 2022 年 10 月 18 日
Hi all. I wrote a code to find the curve for trace and determinant. The problem is that when I zoom and choose one value on the curve and put it into the code, the value obtained for T is different from what is shown on the curve.
For example, here, for c=0.05826 on the curve is -4.06892e-07, while when code runs for this specific value, gives me T =-2.4350e-04.
Could you please let me know what the problem is that this happened and how I can solve it? Thanks in advance for any help
vplc=0.19;
delta=2.5;
tau_max=0.18;
Ktau=0.045;
kc=0.1;
kh=0.05;
Kbar=0.000015;
kp=0.15;
kb=0.4;
Kpm=0.15;
Ke=7;
vs=0.002;
ks=0.1;
kplc=0.055;
ki=2;
gamma=5.5;
kipr=0.18;
c=0.05826
%c =0:0.000001:0.3; %first I plotted the curves for this interval, zoom and choose a point on the curve and run the code for that specific vale
p=(vplc./ki).*(c.^2./((kplc).^2+c.^2));
h=kh.^4./(c.^4+kh.^4);
Po=(p.^2.*c.^4.*h)./(p.^2.*c.^4.*h.*(1+kb)+kb.*kp.^2.*(kc.^4+c.^4-(c.^4.*kh.^4./(c.^4+kh.^4))));
ct=(vs./(gamma.*kipr.*Po)).*(c.^2./(c.^2+ks.^2))+c.*(1+(1/gamma));
Podenominator=(p.^2.*c.^4.*h.*(1+kb)+kb.*kp.^2.*(kc.^4+c.^4-((c.^4.*kh.^4)./(c.^4+kh.^4))));
Dcnumerator=(8.*c.^7.*kh.^4*vplc.^2)./(ki.^2*(c.^4 + kh.^4).*(c.^2 + kplc.^2).^2) - (4.*c.^9.*kh.^4.*vplc.^2)./(ki.^2.*(c.^4 + kh.^4).*(c.^2 + kplc.^2).^3) - (4.*c.^11.*kh.^4*vplc.^2)./(ki.^2.*(c.^4 + kh.^4).^2.*(c.^2 + kplc.^2).^2);
Dcdenominator=kb.*kp.^2.*(4.*c.^3 - (4*c.^3*kh.^4)./(c.^4 + kh.^4) + (4.*c.^7*kh.^4)./(c.^4 + kh.^4).^2) + (8.*c.^7*kh.^4.*vplc.^2.*(kb + 1))./(ki.^2.*(c.^4 + kh.^4).*(c.^2 + kplc.^2).^2) - (4*c.^9.*kh.^4.*vplc.^2.*(kb + 1))/(ki.^2.*(c.^4 + kh.^4).*(c.^2 + kplc.^2).^3) - (4*c.^11.*kh^4.*vplc^2.*(kb + 1))./(ki^2.*(c.^4 + kh^4).^2.*(c.^2 + kplc.^2).^2);
DcPo=(Dcnumerator.*Podenominator-Dcdenominator.*(p.^2.*c.^4.*h))./(Podenominator.^2);
DhPo=((c.^4.*p.^2.*(Podenominator))-(c.^8.*p.^4.*(kh.^4./(c.^4+kh.^4)).*(1+kb)))./(Podenominator.^2);
Dcf1=kipr.*DcPo.*gamma.*ct-kipr.*DcPo.*(1+gamma).*c-kipr.*Po.*(gamma+1)-((2*vs.*c.*(ks^2))./(c.^2+ks^2).^2);
Dhf1=kipr.*DhPo.*(gamma.*ct-(1+gamma).*c);
Dcf2=(4.*c.^3./tau_max).*((kh.^8./(c.^4+kh.^4).^2))-(4.*c.^3./tau_max).*(kh.^4./(c.^4+kh.^4));
Dhf2=-c.^4./tau_max;
T = Dcf1 + Dhf2
D = Dcf1.*Dhf2-Dhf1.*Dcf2
eig1=(T+sqrt(T.^2-4.*D))./2;
eig2=(T-sqrt(T.^2-4.*D))./2;
figure
plot(c,T,'b')
hold on;
plot(c,D,'r')
hold on
plot(c,T.^2-4.*D,'g')
xlabel('c')
ylabel('T & D')
xlim([0 0.3])
ylim([-0.001 0.003])

採用された回答

Paul
Paul 2022 年 10 月 18 日
編集済み: Paul 2022 年 10 月 18 日
Hi @M
The equation for Dcdenominator is not properly vectorized. In one spot it uses /, which should be ./
% was
% Dcdenominator=kb.*kp.^2.*(4.*c.^3 - (4*c.^3*kh.^4)./(c.^4 + kh.^4) + (4.*c.^7*kh.^4)./(c.^4 + kh.^4).^2) + (8.*c.^7*kh.^4.*vplc.^2.*(kb + 1))./(ki.^2.*(c.^4 + kh.^4).*(c.^2 + kplc.^2).^2) - (4*c.^9.*kh.^4.*vplc.^2.*(kb + 1))/(ki.^2.*(c.^4 + kh.^4).*(c.^2 + kplc.^2).^3) - (4*c.^11.*kh^4.*vplc^2.*(kb + 1))./(ki^2.*(c.^4 + kh^4).^2.*(c.^2 + kplc.^2).^2);
%
% should be
% xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx^use./
Dcdenominator=kb.*kp.^2.*(4.*c.^3 - (4*c.^3*kh.^4)./(c.^4 + kh.^4) + (4.*c.^7*kh.^4)./(c.^4 + kh.^4).^2) + (8.*c.^7*kh.^4.*vplc.^2.*(kb + 1))./(ki.^2.*(c.^4 + kh.^4).*(c.^2 + kplc.^2).^2) - (4*c.^9.*kh.^4.*vplc.^2.*(kb + 1))./(ki.^2.*(c.^4 + kh.^4).*(c.^2 + kplc.^2).^3) - (4*c.^11.*kh^4.*vplc^2.*(kb + 1))./(ki^2.*(c.^4 + kh^4).^2.*(c.^2 + kplc.^2).^2);
  2 件のコメント
M
M 2022 年 10 月 18 日
Excellent @Paul, it works perfectly... thanks
I have a question, I would appreciate if you can answer it.
With another method that I trust, I found a point where T~0 (when c~0.091), but even though all my calculations (DcPo, DhPo, T and D...)and parameters are correct here (I checked them in Maple), it contradicts with what I got (for example here for c~0,058, T becomes almost zero). you don't have any suggestion how to find the problem?
Paul
Paul 2022 年 10 月 18 日
I'm not following ....

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeExploration and Visualization についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by