Volume formed by a moving triangle

1 ビュー (過去 30 日間)
Miraboreasu
Miraboreasu 2022 年 9 月 23 日
編集済み: Torsten 2022 年 10 月 3 日
Hello,
A pressure ff (not force) is applied to the three points of a triangle. The triangle is moving during the time ΔtΔt (t2-t1), and I know the coordinates of each point, namely
t1: p1(x1,y1,z1),p2(x2,y2,z2),p3(x3,y3,z3)
t2: p1(xx1,yy1,zz1),p2(xx2,yy2,zz2),p3(xx3,yy3,zz3)
I also know the velocity as a vector for each point
t1: p1(v1x,v1y,v1z),p2(v2x,v2y,v2z),p3(v3x,v3y,v3z)
t2: p1(vv1x,vv1y,vv1z),p2(vv2x,vv2y,vv2z),p3(vv3x,vv3y,vv3z)
I know this is not 100% right expression, but I want to know how much energy this pressure, p, bring to the system
  6 件のコメント
Torsten
Torsten 2022 年 10 月 3 日
編集済み: Torsten 2022 年 10 月 3 日
Is the normal to the triangle always equal to the direction in which the triangle is swept ?
Otherwise, you will have to integrate. Something like
V(t) = A*integral_{t'=0}^{t'=t} dot(n(t'),v(t')) dt'
where A is the area of the triangle, n(t') is the (unit) normal vector to the triangle and v(t') is the velocity vector at time t'.

サインインしてコメントする。

採用された回答

Chunru
Chunru 2022 年 9 月 23 日
編集済み: Chunru 2022 年 9 月 23 日
% initial triangle
p1 = [0, 0, 0]; p2 = [3, 0, 0]; p3 = [0 4 0];
% the velocity vector should be specified (instead of final triangle since
% final triangle coordinates cannot be arbitrary if volume is going to be
% computed)
v = [0 0 1];
t = 3;
cbase = .5*cross(p2-p1, p3-p1)
cbase = 1×3
0 0 6
vol = dot(cbase, v*t)
vol = 18
% If you know p1, p2, p3 and v vs t, you can consider to use the above
% calculation for each time interva, where the volume can be approximated
% by using the base area and the velocity vector.
  3 件のコメント
Miraboreasu
Miraboreasu 2022 年 9 月 23 日
How can I make sure integral of pressure (force) and velocity are the same direction?

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Find more on Lighting, Transparency, and Shading in Help Center and File Exchange

タグ

製品


リリース

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by