分類学習機アプリで学習させた結果の出力方法

1 回表示 (過去 30 日間)
Yumi Iwakami
Yumi Iwakami 2022 年 8 月 22 日
コメント済み: Yumi Iwakami 2022 年 9 月 22 日
分類学習機アプリで5交差検証法を使って学習させた結果を一覧出力しようとしています.
混同行列やモデルの出力は出来たのですが,どのデータの予測が正解でどのデータの予測が誤りだったのか検証したいと考えています.
イメージとしては,以下の様になるのが理想です.
被験者ID  分類ラベル  予測結果
  1    Positive   Positive
  2    Positive   Negative

採用された回答

Kojiro Saito
Kojiro Saito 2022 年 9 月 22 日
モデルをエクスポートした後に元データと予測結果からtableを作ればできるかと思います。
ドキュメントの例に含まれているフィッシャーのアヤメデータを使ってサンプルを書きます。
t = readtable('fisheriris.csv');
% ID列を追加
t.ID = (1:height(t))';
% 分類学習器を起動
% classificationLearner
% 学習させたモデルを「コンパクトモデルのエクスポート」でcompactTrainedModelという変数でワークスペースで保存
% ここではmatファイルに出力したものを読み込みます
load compactTrainedModel
yPred = compactTrainedModel.predictFcn(t);
resultTable = table(t.ID, t.Species, yPred, 'VariableNames', {'ID', '分類ラベル', '予測結果'});
disp(resultTable)
ID 分類ラベル 予測結果 ___ ______________ ______________ 1 {'setosa' } {'setosa' } 2 {'setosa' } {'setosa' } 3 {'setosa' } {'setosa' } 4 {'setosa' } {'setosa' } 5 {'setosa' } {'setosa' } 6 {'setosa' } {'setosa' } 7 {'setosa' } {'setosa' } 8 {'setosa' } {'setosa' } 9 {'setosa' } {'setosa' } 10 {'setosa' } {'setosa' } 11 {'setosa' } {'setosa' } 12 {'setosa' } {'setosa' } 13 {'setosa' } {'setosa' } 14 {'setosa' } {'setosa' } 15 {'setosa' } {'setosa' } 16 {'setosa' } {'setosa' } 17 {'setosa' } {'setosa' } 18 {'setosa' } {'setosa' } 19 {'setosa' } {'setosa' } 20 {'setosa' } {'setosa' } 21 {'setosa' } {'setosa' } 22 {'setosa' } {'setosa' } 23 {'setosa' } {'setosa' } 24 {'setosa' } {'setosa' } 25 {'setosa' } {'setosa' } 26 {'setosa' } {'setosa' } 27 {'setosa' } {'setosa' } 28 {'setosa' } {'setosa' } 29 {'setosa' } {'setosa' } 30 {'setosa' } {'setosa' } 31 {'setosa' } {'setosa' } 32 {'setosa' } {'setosa' } 33 {'setosa' } {'setosa' } 34 {'setosa' } {'setosa' } 35 {'setosa' } {'setosa' } 36 {'setosa' } {'setosa' } 37 {'setosa' } {'setosa' } 38 {'setosa' } {'setosa' } 39 {'setosa' } {'setosa' } 40 {'setosa' } {'setosa' } 41 {'setosa' } {'setosa' } 42 {'setosa' } {'setosa' } 43 {'setosa' } {'setosa' } 44 {'setosa' } {'setosa' } 45 {'setosa' } {'setosa' } 46 {'setosa' } {'setosa' } 47 {'setosa' } {'setosa' } 48 {'setosa' } {'setosa' } 49 {'setosa' } {'setosa' } 50 {'setosa' } {'setosa' } 51 {'versicolor'} {'versicolor'} 52 {'versicolor'} {'versicolor'} 53 {'versicolor'} {'versicolor'} 54 {'versicolor'} {'versicolor'} 55 {'versicolor'} {'versicolor'} 56 {'versicolor'} {'versicolor'} 57 {'versicolor'} {'versicolor'} 58 {'versicolor'} {'versicolor'} 59 {'versicolor'} {'versicolor'} 60 {'versicolor'} {'versicolor'} 61 {'versicolor'} {'versicolor'} 62 {'versicolor'} {'versicolor'} 63 {'versicolor'} {'versicolor'} 64 {'versicolor'} {'versicolor'} 65 {'versicolor'} {'versicolor'} 66 {'versicolor'} {'versicolor'} 67 {'versicolor'} {'versicolor'} 68 {'versicolor'} {'versicolor'} 69 {'versicolor'} {'versicolor'} 70 {'versicolor'} {'versicolor'} 71 {'versicolor'} {'virginica' } 72 {'versicolor'} {'versicolor'} 73 {'versicolor'} {'versicolor'} 74 {'versicolor'} {'versicolor'} 75 {'versicolor'} {'versicolor'} 76 {'versicolor'} {'versicolor'} 77 {'versicolor'} {'versicolor'} 78 {'versicolor'} {'virginica' } 79 {'versicolor'} {'versicolor'} 80 {'versicolor'} {'versicolor'} 81 {'versicolor'} {'versicolor'} 82 {'versicolor'} {'versicolor'} 83 {'versicolor'} {'versicolor'} 84 {'versicolor'} {'virginica' } 85 {'versicolor'} {'versicolor'} 86 {'versicolor'} {'versicolor'} 87 {'versicolor'} {'versicolor'} 88 {'versicolor'} {'versicolor'} 89 {'versicolor'} {'versicolor'} 90 {'versicolor'} {'versicolor'} 91 {'versicolor'} {'versicolor'} 92 {'versicolor'} {'versicolor'} 93 {'versicolor'} {'versicolor'} 94 {'versicolor'} {'versicolor'} 95 {'versicolor'} {'versicolor'} 96 {'versicolor'} {'versicolor'} 97 {'versicolor'} {'versicolor'} 98 {'versicolor'} {'versicolor'} 99 {'versicolor'} {'versicolor'} 100 {'versicolor'} {'versicolor'} 101 {'virginica' } {'virginica' } 102 {'virginica' } {'virginica' } 103 {'virginica' } {'virginica' } 104 {'virginica' } {'virginica' } 105 {'virginica' } {'virginica' } 106 {'virginica' } {'virginica' } 107 {'virginica' } {'virginica' } 108 {'virginica' } {'virginica' } 109 {'virginica' } {'virginica' } 110 {'virginica' } {'virginica' } 111 {'virginica' } {'virginica' } 112 {'virginica' } {'virginica' } 113 {'virginica' } {'virginica' } 114 {'virginica' } {'virginica' } 115 {'virginica' } {'virginica' } 116 {'virginica' } {'virginica' } 117 {'virginica' } {'virginica' } 118 {'virginica' } {'virginica' } 119 {'virginica' } {'virginica' } 120 {'virginica' } {'virginica' } 121 {'virginica' } {'virginica' } 122 {'virginica' } {'virginica' } 123 {'virginica' } {'virginica' } 124 {'virginica' } {'virginica' } 125 {'virginica' } {'virginica' } 126 {'virginica' } {'virginica' } 127 {'virginica' } {'virginica' } 128 {'virginica' } {'virginica' } 129 {'virginica' } {'virginica' } 130 {'virginica' } {'virginica' } 131 {'virginica' } {'virginica' } 132 {'virginica' } {'virginica' } 133 {'virginica' } {'virginica' } 134 {'virginica' } {'virginica' } 135 {'virginica' } {'virginica' } 136 {'virginica' } {'virginica' } 137 {'virginica' } {'virginica' } 138 {'virginica' } {'virginica' } 139 {'virginica' } {'virginica' } 140 {'virginica' } {'virginica' } 141 {'virginica' } {'virginica' } 142 {'virginica' } {'virginica' } 143 {'virginica' } {'virginica' } 144 {'virginica' } {'virginica' } 145 {'virginica' } {'virginica' } 146 {'virginica' } {'virginica' } 147 {'virginica' } {'virginica' } 148 {'virginica' } {'virginica' } 149 {'virginica' } {'virginica' } 150 {'virginica' } {'virginica' }
  1 件のコメント
Yumi Iwakami
Yumi Iwakami 2022 年 9 月 22 日
コード付きの詳しい説明,ありがとうございます.
MATLABによる機械学習についてもうすこし勉強してみたいと思います.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeStatistics and Machine Learning Toolbox 入門 についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!