Plotting a 3D finition with 1D implicite variable

1 回表示 (過去 30 日間)
Thomas TJOCK-MBAGA
Thomas TJOCK-MBAGA 2022 年 7 月 18 日
編集済み: Torsten 2022 年 7 月 18 日
Hello! I have a 3D advection-dispersion équation as follows: dC/dt = Dx *d^2C/dx^2 + Dy *d^2C/dy^2 + Dz *d^2C/dz^2 - vx *dC/dx - vy *dC/dy - vy *dC/dz -mu*C. When using change of variable e.g. X = a*x + b*y + c*z i obtained a 1D advection-dispersion équation: dC/dt = D *d^2C/dX^2 - V*dC/dX -mu*C. The solution si in the form C(X,t) = exp((V/2D)*X+√V^2 + 4*D*mu)*erfc((X+√ 4*D*mu)/2√D*t).My problème si that i wanted to plot thé concentration C with respect to x, y, ans z for fixes values of other variables. How Can i do or in MATLAB knowing that the solution si expressed in term of X???
  2 件のコメント
KSSV
KSSV 2022 年 7 月 18 日
DEfine your variables, write the formula; substitude the variables in the formula and plot.
Torsten
Torsten 2022 年 7 月 18 日
編集済み: Torsten 2022 年 7 月 18 日
I have a 3D advection-dispersion équation as follows: dC/dt = Dx *d^2C/dx^2 + Dy *d^2C/dy^2 + Dz *d^2C/dz^2 - vx *dC/dx - vy *dC/dy - vy *dC/dz -mu*C. When using change of variable e.g. X = a*x + b*y + c*z i obtained a 1D advection-dispersion équation: dC/dt = D *d^2C/dX^2 - V*dC/dX -mu*C.
Many people would be very happy if this worked, but such a magic transformation does not exist. Unfortunately.

サインインしてコメントする。

回答 (0 件)

カテゴリ

Help Center および File ExchangeGeometry and Mesh についてさらに検索

タグ

製品


リリース

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by