Disturbance Rejection with PID turner
3 ビュー (過去 30 日間)
古いコメントを表示
I'm trying to do a disturbance rejection with PID tuner.I'm trying to do it but it keeps giving error.Could you help me?
G=tf([1],[0.1 1]);
G.InputName='yzad';
G.Output='ys';
yzad={1,10,100}
K={-100,-10,1,5,3}
Sum=sumbkl('++','yzad','ys')
ISAPID=connect('-100','Sum','G')
tf(ISAPID)
You can find my diagram attached .Thanks
0 件のコメント
採用された回答
Sam Chak
2022 年 6 月 25 日
Hi @Esin Derin
For simplicity, you can do something straightforward and plot the time responses like this.
Case 1a:
,
rad/s
% sin(omega*t) = sin((2π*Freq)*t) = sin((2π/τ)*t)
omega = 1; % angular frequency {1, 10, 100} rad/s
tau = 2*pi/omega; % time period of a wave
Tf = 2*tau; % wave duration of Tf seconds
[u, t] = gensig("sine", tau, Tf); % generates a signal where t runs from 0 to Tf seconds
G = tf(1, [0.1 1]); % plant transfer function
K = -100; % feedback gain {-100, -10, -1, 5, 3}
H = -K;
Gcl = feedback(G, H) % closed-loop system subjected to a disturbance Y(s)/D(s)
lsim(Gcl, u, t)
grid on
Case 1b:
,
rad/s
% sin(omega*t) = sin((2π*Freq)*t) = sin((2π/τ)*t)
omega = 10; % angular frequency {1, 10, 100} rad/s
tau = 2*pi/omega; % time period of a wave
Tf = 2*tau; % wave duration of Tf seconds
[u, t] = gensig("sine", tau, Tf); % generates a signal where t runs from 0 to Tf seconds
G = tf(1, [0.1 1]); % plant transfer function
K = -100; % feedback gain {-100, -10, -1, 5, 3}
H = -K;
Gcl = feedback(G, H) % closed-loop system subjected to a disturbance Y(s)/D(s)
lsim(Gcl, u, t)
grid on
Case 1c:
,
rad/s
% sin(omega*t) = sin((2π*Freq)*t) = sin((2π/τ)*t)
omega = 100; % angular frequency {1, 10, 100} rad/s
tau = 2*pi/omega; % time period of a wave
Tf = 2*tau; % wave duration of Tf seconds
[u, t] = gensig("sine", tau, Tf); % generates a signal where t runs from 0 to Tf seconds
G = tf(1, [0.1 1]); % plant transfer function
K = -100; % feedback gain {-100, -10, -1, 5, 3}
H = -K;
Gcl = feedback(G, H) % closed-loop system subjected to a disturbance Y(s)/D(s)
lsim(Gcl, u, t)
grid on
Case 2a:
,
rad/s
% sin(omega*t) = sin((2π*Freq)*t) = sin((2π/τ)*t)
omega = 1; % angular frequency {1, 10, 100} rad/s
tau = 2*pi/omega; % time period of a wave
Tf = 2*tau; % wave duration of Tf seconds
[u, t] = gensig("sine", tau, Tf); % generates a signal where t runs from 0 to Tf seconds
G = tf(1, [0.1 1]); % plant transfer function
K = -10; % feedback gain {-100, -10, -1, 5, 3}
H = -K;
Gcl = feedback(G, H) % closed-loop system subjected to a disturbance Y(s)/D(s)
lsim(Gcl, u, t)
grid on
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で PID Controller Tuning についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!



