Nonlinear Differential Equation Solving

13 ビュー (過去 30 日間)
Nuri Efe TATLI
Nuri Efe TATLI 2022 年 6 月 14 日
コメント済み: Sam Chak 2022 年 6 月 14 日
Hello everyone.
I have a second order non-linear homogenous differential equation I want to solve.
Equation basicly is : A*y'' - B*y + C = D*cos(y)
How can i solve this? I am trying to acquire a solution in the form of y = ....
Note = y'' is second order derivative of y

採用された回答

Sam Chak
Sam Chak 2022 年 6 月 14 日
The analytical solution probably does not exist.
syms y(t) A B C D
eqn = A*diff(y,t,2) - B*y + C == D*cos(y);
ySol(t) = dsolve(eqn)
Try ode45 instead if the parameters {A, B, C, D} are known. See some examples here:
  2 件のコメント
Nuri Efe TATLI
Nuri Efe TATLI 2022 年 6 月 14 日
Thanks for the swift answer @Sam Chak
Could i possibly get an analytical solution if i linearize the equation and solve it for y ?
If i can what would be the way to do this ?
Thanks in advance !
Sam Chak
Sam Chak 2022 年 6 月 14 日
Yes @Nuri Efe TATLI. If cos(y) is linearized at y = 0, where , then the analytical solution exists.
syms y(t) A B C D
eqn = A*diff(y,t,2) - B*y + C == D;
ySol(t) = dsolve(eqn)
ySol(t) = 

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeNumeric Solvers についてさらに検索

製品


リリース

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by