Solving nonlinear function using fzero, Error Function values at the interval endpoints must differ in sign.

4 ビュー (過去 30 日間)
Miraboreasu 2022 年 6 月 4 日
コメント済み: Sam Chak 2022 年 6 月 5 日
```
Imp=100;
t0=1e-6;
P=204000000;
Tf=2e-3;
x = fzero( @(x) myfunction(x, t0, Imp, P, Tf), [1.001, 10000]);
function [f] = myfunction( x, t0, Imp, P0, Tf)
f = Imp - (-(P0*t0*(x-1.0)*(x^(-Tf/(t0*(x-1.0)))-1.0))/(log(x)*(x^(-1.0/(x-1.0)) -x^(-x/(x-1.0))))+(P0*t0*(x^(-(Tf*x)/(t0*(x-1.0)))-1.0)*(x-1.0))/(x*log(x)*(x^(-1.0/(x-1.0))-x^(-x/(x-1.0)))));
end
```
x must bigger than 1.0
I don't think these input will make fzero suffer
thank you
4 件のコメント2 件の古いコメントを表示2 件の古いコメントを非表示
Walter Roberson 2022 年 6 月 4 日

It is +100 at x=-1 but change x away from -1 and it goes complex, so at the moment I have no evidence that it has a real root.
Sam Chak 2022 年 6 月 5 日
Once you have found the root of nonlinear function, can you verify if the solution really crosses 0?
Imp = 100;
t0 = 1e-6;
P0 = 204000000;
Tf = 2e-3;
f = @(x) Imp - (-(P0*t0*(x-1.0)*(x^(-Tf/(t0*(x-1.0)))-1.0))/(log(x)*(x^(-1.0/(x-1.0)) -x^(-x/(x-1.0))))+(P0*t0*(x^(-(Tf*x)/(t0*(x-1.0)))-1.0)*(x-1.0))/(x*log(x)*(x^(-1.0/(x-1.0))-x^(-x/(x-1.0)))));

サインインしてコメントする。

回答 (1 件)

Lateef Adewale Kareem 2022 年 6 月 4 日
Imp=100;
t0=1e-6;
P=204000000;
Tf=2e-3;
x = nan;
options = optimset('Display','off'); % show iterations
x0 = 2;
while(isnan(x))
x = fzero( @(x) myfunction(x, t0, Imp, P, Tf), x0, options);
x0 = x0*1.2;
end
disp(['x = ', num2str(x)])
x = 1.762566874060497e+21
function [f] = myfunction( x, t0, Imp, P0, Tf)
f = Imp - (-(P0*t0*(x-1.0)*(x^(-Tf/(t0*(x-1.0)))-1.0))/(log(x)*(x^(-1.0/(x-1.0)) -x^(-x/(x-1.0))))+(P0*t0*(x^(-(Tf*x)/(t0*(x-1.0)))-1.0)*(x-1.0))/(x*log(x)*(x^(-1.0/(x-1.0))-x^(-x/(x-1.0)))));
end

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeMatrix Computations についてさらに検索

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by