Info
この質問は閉じられています。 編集または回答するには再度開いてください。
ı want to solve this question by excel formulas?
1 回表示 (過去 30 日間)
古いコメントを表示
この 質問 は Steven Lord
さんによってフラグが設定されました
You initially put $5,000 into the bank at 4% annual interest rate. Each year you put in an additional $2000. After 20 years of doing this, you start taking out bank disbursements (basically payments *from* the bank) to pay for college. If you will take out 4 equally spaced disbursements to pay for 4 years of college and the final value of the college loan will be 0 after taking those 4 disbursements, what will be the value of each of those 4 disbursements?
7 件のコメント
Walter Roberson
2022 年 5 月 10 日
User explicitly wants excel... "But actually ı dont want its formula for matlab. I couldnt find its result and ı want to see if anyone could help for excel solution. Because there is no platform that ı know to discuss about excel problems, ı am new on excel and ı want to improve myself about it."
Torsten
2022 年 5 月 11 日
Sorry - I only read the title " I want to solve this question by Excel formulas ".
回答 (1 件)
Torsten
2022 年 5 月 10 日
編集済み: Torsten
2022 年 5 月 10 日
Without guarantee:
disbursement = (5000*1.04^23 + 2000*1.04^4*(1.04^19-1)/0.04)/((1.04^4-1)/0.04)
thus approximately 18150 $.
3 件のコメント
Torsten
2022 年 5 月 10 日
編集済み: Torsten
2022 年 5 月 10 日
Start year 1: 5000
After 1 year: 5000*1.04 + 2000
After 2 years: 5000*1.04^2 + 2000*1.04 + 2000
...
After 20 years: 5000*1.04^20 + 2000*(1.04+1.04^2+...+1.04^19)
(Don't know if after 20 years, 2000 $ are still put in - I assumed no).
Beginning of 21st year:
5000*1.04^20 + 2000*(1.04+1.04^2+...+1.04^19) - dbm
Beginning of 22nd year:
5000*1.04^21 + 2000*(1.04^2+1.04^2+...+1.04^20) - dbm*1.04 - dbm
Beginning of 23rd year:
5000*1.04^22 + 2000*(1.04^3+1.04^3+...+1.04^21) - dbm*1.04^2 - dbm*1.04 - dbm
Beginning of 24th year:
5000*1.04^23 + 2000*(1.04^4+1.04^4+...+1.04^22) - dbm*1.04^3 - dbm*1.04^2 - dbm*1.04 - dbm =
5000*1.04^23 + 2000*1.04^4*(1.04^19-1)/0.04 - dbm*((1.04^4-1)/0.04) == 0
Solve for dbm.
Sam Chak
2022 年 5 月 10 日
編集済み: Sam Chak
2022 年 5 月 10 日
The compound interest after 20 years is $65,876.70. Then
Year 21: $65876.70*1.04 - x
Year 22: ($65876.70*1.04 - x)*1.04 - x
Year 23: (($65876.70*1.04 - x)*1.04 - x)*1.04 - x
Year 24: ((($65876.70*1.04 - x)*1.04 - x)*1.04 - x)*1.04 - x ... the 4th disbursement empties the account
format longg
f = @(x) (((65876.70*1.04 - x)*1.04 - x)*1.04 - x)*1.04 - x;
dbm = fsolve(f, 20000)
dbm = 18148.37506946083
この質問は閉じられています。
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!