A sinusoid has just been fed into a system.

2 ビュー (過去 30 日間)
Jonathan George
Jonathan George 2022 年 3 月 26 日
編集済み: Sam Chak 2022 年 3 月 26 日
The system in question has a frequency response given by H(w) = 1/(1+0004jw), where w represents frequency in rads/second.
The input sinusoid has an amplitude of 3, phase of 0 radians and a frequency of 33Hz.
How would I determine the amplitude and phase (between -pi and pi rads) of the sinusoidal output?
Many thanks.
(Keep in mind that an LTI system never changes the frequency of a sinusoid.)
  8 件のコメント
Star Strider
Star Strider 2022 年 3 月 26 日
No worries!
This might be solved easily using Phasor notation.
Sam Chak
Sam Chak 2022 年 3 月 26 日
No wonder, I almost use
s = tf('s');
sys = 1/(1 + 4*s);
bode(sys)
Hz is equivalent to rad/s.
The Bode plot can tell you whether a sinusoidal input signal in amplified or attenuated (in dB), or how much it is shifted in phase when passing through a linear dynamical system at a certain frequency. These info are generally useful when designing low-pass and high-pass filters.

サインインしてコメントする。

採用された回答

Star Strider
Star Strider 2022 年 3 月 26 日
Using phasors —
syms omega
sympref('AbbreviateOutput',false); % Optional
omega = 2*pi*33; % Radian Frequency
H = 1/(1+0.004*j*omega) % System
H = 0.5925 - 0.4914i
phasorH = [abs(H), angle(H)] % Phasor = [Amplitude PhaseAngle]
phasorH = 1×2
0.7697 -0.6924
phasorInput = [3, 0]
phasorInput = 1×2
3 0
phasorOutput = [phasorH(1)*phasorInput(1), phasorH(2)+phasorInput(2)] % Multiply Amplitudes, Add Phases
phasorOutput = 1×2
2.3091 -0.6924
So, the output has an amplitude of 2.3091 and a phase angle of -0.6924 radians.
I haven’t routinely worked with phasors in a while (since grad school, back in the Precambrian) so check this. However, I believe the approach is correct.
.
  2 件のコメント
Jonathan George
Jonathan George 2022 年 3 月 26 日
I have confirmed it is correct! Thanks again, Star :)
Star Strider
Star Strider 2022 年 3 月 26 日
As always, my pleasure!

サインインしてコメントする。

その他の回答 (1 件)

Sam Chak
Sam Chak 2022 年 3 月 26 日
編集済み: Sam Chak 2022 年 3 月 26 日
This is sort of the "control theorist's way", if you are interested to learn.
s = tf('s');
sys = 1/(1 + 0.004*s)
omega = 33*2*pi;
[mag, phase, wout] = bode(sys, omega)
Input_Amplitude = 3
Output_Amplitude = Input_Amplitude*mag
Output_phase_in_radian = (pi/180)*phase % the unit degree is commonly used
sys =
1
-----------
0.004 s + 1
Continuous-time transfer function.
mag =
0.7697
phase =
-39.6716
wout =
207.3451
Input_Amplitude =
3
Output_Amplitude =
2.3091
Output_phase_in_radian =
-0.6924

カテゴリ

Help Center および File ExchangeTime and Frequency Domain Analysis についてさらに検索

製品


リリース

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by