# blank plot with out value

2 ビュー (過去 30 日間)
shiv gaur 2022 年 2 月 28 日
コメント済み: Image Analyst 2022 年 2 月 28 日
a(1)=1;
b(1)=1;
c(1)=1;
s1=0;
s2=0;
s3=0;
k3=28;
k1=8/3;
k2=10;
t=1:20;
for i=1:20
a(i+1)=(1/i+1)*(b(i)-a(i))*k2;
b(i+1)=(1/(i+1))*(a(i)*(k3-c(i))-b(i));
c(i+1)=(1/(i+1))*(a(i)*b(i)-k1*c(i));
end
for i=1:20
s1=s1+(a(i).*t.^i);
s2=s2+(b(i).*t.^i);
s3=s3+(c(i).*t.^i);
end
plot(t,s1)
pl you are req to plot the plot between t vs s1 may be data overflow so how to remove it
##### 2 件のコメントなしを表示なしを非表示
David Hill 2022 年 2 月 28 日
Describe the equations you are trying to plot. Current equations are going to inf and result in nan values in s1.
shiv gaur 2022 年 2 月 28 日
this is lorenz equation which is change in power series a b c from x y z
a(i+1)=(1/i+1)*(b(i)-a(i))*k2;
b(i+1)=(1/(i+1))*(a(i)*(k3-c(i))-b(i));
c(i+1)=(1/(i+1))*(a(i)*b(i)-k1*c(i));

サインインしてコメントする。

### 回答 (2 件)

Image Analyst 2022 年 2 月 28 日
I think you mean s1 vs. t. If so, maybe this is what you want:
a(1)=1;
b(1)=1;
c(1)=1;
s1=0;
s2=0;
s3=0;
k3=28;
k1=8/3;
k2=10;
t=1:20;
for k=1:20
a(k+1)=(1/k+1)*(b(k)-a(k))*k2;
b(k+1)=(1/(k+1))*(a(k)*(k3-c(k))-b(k));
c(k+1)=(1/(k+1))*(a(k)*b(k)-k1*c(k));
end
% Now make t (currently 20 long) the same length (21) as "a":
t = 1 : length(a);
for k=1: length(a)
s1(k+1) = s1(k) + (a(k) .* t(k) .^ k);
s2 = s2 + (b(k) .* t(k) .^ k);
s3 = s3 + (c(k) .* t(k) .^ k);
end
% Now make t (currently 22 long) the same length (22) as s1:
t = 1 : length(s1);
% Now plot
plot(t, s1, 'b-', 'LineWidth', 2)
grid on;
xlabel('t');
ylabel('s1')
##### 7 件のコメント5 件の古いコメントを表示5 件の古いコメントを非表示
shiv gaur 2022 年 2 月 28 日
is there any help to see the research paper and try to reproduce the fig5 ,4 of lorenz system which platform is use for helping
Image Analyst 2022 年 2 月 28 日

サインインしてコメントする。

Walter Roberson 2022 年 2 月 28 日
You can remove that problem by using the symbolic toolbox for the calculations.
This will not be fast, but at least you will get some value instead of inf or nan. The values will probably reach the order of 10^26000 .
##### 3 件のコメント1 件の古いコメントを表示1 件の古いコメントを非表示
shiv gaur 2022 年 2 月 28 日
is there any help to see the research paper and try to reproduce the fig5 ,4 of lorenz system which platform is use for helping
Walter Roberson 2022 年 2 月 28 日
Original plot is blank because every value is so far out of range that it cannot be plotted. The second shows the log10 of the data -- it is obviously trending to the order of -10^5000
Reminder: your role is to show you things like the below, how to get extended range. Our role is not to do your research for you or examine papers to come up with the correct equations for you. We help you understand MATLAB; we mostly do not help you to understand the science or mathematics.
N = 20;
a = sym(zeros(N+1,1));
b = sym(zeros(N+1,1));
c = sym(zeros(N+1,1));
a(1) = 1;
b(1) = 1;
c(1) = 1;
s1 = sym(0);
s2 = sym(0);
s3 = sym(0);
k3 = sym(28);
k1 = sym(8)/3;
k2 = sym(10);
t = sym(1:N+1).';
for i=1:N
a(i+1)=(1/i+1)*(b(i)-a(i))*k2;
b(i+1)=(1/(i+1))*(a(i)*(k3-c(i))-b(i));
c(i+1)=(1/(i+1))*(a(i)*b(i)-k1*c(i));
end
for i=1:N
s1=s1+(a(i).*t.^i);
s2=s2+(b(i).*t.^i);
s3=s3+(c(i).*t.^i);
end
s1
s1 =
vpa(s1)
ans =
subplot(2,1,1);
plot(double(t), double(s1)); title('original')
subplot(2,1,2);
plot(double(t), double(log10(-s1))); title('log10')

サインインしてコメントする。

### カテゴリ

Help Center および File ExchangeNumbers and Precision についてさらに検索

R2021b

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by