fitting implicit non-linear equation

2 ビュー (過去 30 日間)
MATT
MATT 2014 年 11 月 25 日
コメント済み: Torsten 2014 年 11 月 26 日
Dear ALL, I have the data points below, defined by the variables X1,X2,X3,X4:
X1 X2 X3 X4
3.5E-4 0 0.99965 1
4.08935E-4 0.00138 0.99821 0.85588
0.00114 0.03473 0.96413 0.30777
6.43932E-4 0.00989 0.98947 0.54354
0.00145 0.04977 0.94878 0.24193
0.0019 0.08999 0.90811 0.18414
0.00268 0.14986 0.84745 0.13042
0.00268 0.14998 0.84734 0.13056
0.00465 0.2488 0.74655 0.07521
I need to fit these data points using a function of the type
a*b*ln(X4)=W1*X2*(1-X1)+W2*X3*(1-X1)-W3*X2*X3+W4*X2*X3*(1-2*X1)
where a,b are constants (8.31 and 973), and W1,W2,W3,W4 are adjustable parameters. Could you indicate me how to do that? Thank you in advance, Matthieu

回答 (2 件)

Torsten
Torsten 2014 年 11 月 25 日
Use lsqnonlin with f(i) defined as
f(i) = a*b*ln(X4(i))-(W1*X2(i)*(1-X1(i))+W2*X3*(1-X1(i))-W3*X2(i)*X3(i)+W4*X2(i)*X3(i)*(1-2*X1(i)))
Best wishes
Torsten.
  2 件のコメント
MATT
MATT 2014 年 11 月 25 日
編集済み: MATT 2014 年 11 月 25 日
Hello, and thank. I am not sure I understand how to input the indices:
I define my function as:
function F = FIT(W, X1, X2, X3, X4)
i=1:9;
F = 8.31*973*ln(X4(i))-(W(1)*X2(i)*(1-X1(i))+W(2)*X3(i)*(1-X1(i))-W(3)*X2(i)*X3(i)+W(4)*X2(i)*X3(i)*(1-2*X1(i)));
end
Then I launch the following command:
W0=[0.10,1,40,1];
[W] = lsqnonlin(@FIT,W0, X1, X2, X3, X4);
This does not seem to work, I guess it inputs all of the X(i) rather than fitting the data. Any advice on how to debbug it? Best, Matthieu
Torsten
Torsten 2014 年 11 月 26 日
As I see now, your function is linear in the unknown Parameters.
So you can determine W simply by
A=zeros(9,4);
B=zeros(9);
for ii=1:9
A(ii,1)=X2(ii)*(1-X1(ii));
A(ii,2)=X3(ii)*(1-X1(ii));
A(ii,3)=-X2(ii)*X3(ii);
A(ii,4)=X2(ii)*X3(ii)*(1-2*X1(ii));
B(ii)=a*b*log(X4(ii));
end
W=A\B;
Best wishes
Torsten.

サインインしてコメントする。


arich82
arich82 2014 年 11 月 26 日
I question the physicality of your fitting equation:
Since you have a log on the left-hand side, and your data includes X4(1) == 1 and X2(1) == 0 exactly, it seems like W2 should necessarily be 0 for the equation to remain valid...
In your data, it seems like X3 is very nearly (1 - X2). If you use this substitution, you can plot your data (and your fit) with plot3.
Feel free to play with the code below. I used the backslash operator for fitting, which I believe results in a least-squares fit via QR (but don't hold me to that):
First, some preliminary definitions.
%%%%
%%data
%%%%
clear; close all; clc;
data = [...
0.00035, 0, 0.99965, 1; ...
0.000408935, 0.00138, 0.99821, 0.85588; ... % swapped rows
0.000643932, 0.00989, 0.98947, 0.54354; ... % swapped rows
0.00114, 0.03473, 0.96413, 0.30777; ...
0.00145, 0.04977, 0.94878, 0.24193; ...
0.0019, 0.08999, 0.90811, 0.18414; ...
0.00268, 0.14986, 0.84745, 0.13042; ...
0.00268, 0.14998, 0.84734, 0.13056; ...
0.00465, 0.2488, 0.74655, 0.07521; ...
];
% Note: swapping rows 3 & 4 dowsn't affect the fitting, but makes
% ploting lines cleaner
X1 = data(:, 1);
X2 = data(:, 2);
X3 = data(:, 3);
X4 = data(:, 4);
a = 8.31;
b = 973;
% re-parameterize (unnecessary, but might simplify some later algebra)
T = a*b*log(X4);
X = X2;
Y = 1 - X1;
Z = X3;
% Note: Z = X3 ~~ (1 - X2) == (1 - X)
For the first fit, we'll assume X3 = 1 - X1
%%%%
%%w: fit assuming X3 = (1 - X2), using all four w's
%%%%
% T = w2*Y + (w1 - w2 + 2*w4)*X.*Y + (w3 + w4)*(X.^2 - X) - 2*w4*X.^2.*Y;
M = [Y, X.*Y, X.^2 - X, X.^2.*Y];
m = M\T;
Tm = M*m;
X4m = exp(Tm/a/b);
w(4) = m(4)/2;
w(3) = m(3) - w(4);
w(2) = m(1);
w(1) = m(2) + w(2) - 2*w(4);
w = w(:);
err_m = (X4 - X4m)./X4m;
w
err_m
Now let's see what happens if we enforce the (perhaps more physical) constraint W2 = 0
%%%%
%%w2: fit assuming X3 = (1 - X2), using w2 = 0
%%%%
% T = (w1 + 2*w4)*X.*Y + (w3 + w4)*(X.^2 - X) - 2*w4*X.^2.*Y;
M = [X.*Y, X.^2 - X, X.^2.*Y];
m2 = M\T;
Tm2 = M*m2;
X4m2 = exp(Tm2/a/b);
w2(4) = m(3)/2;
w2(3) = m(2) - w2(4);
w2(2) = 0;
w2(1) = m(2) - 2*w2(4);
w2 = w2(:);
err_m2 = (X4 - X4m2)./X4m2;
w2
err_m2
Now lets use the full equation (no assumption on X3)
%%%%
%%W: fit using all four w's (no assumptions)
%%%%
%
% TW = ...
% W(1)*X2.*(1 - X1) ...
% + W(2)*X3.*(1 - X1) ...
% - W(3)*X2.*X3 ...
% + W(4)*X2.*X3.*(1 - 2*X1);
M = [X2.*(1 - X1), X3.*(1 - X1), -X2.*X3, X2.*X3.*(1 - 2*X1)];
W = M\(a*b*log(X4));
TW = M*W;
X4W = exp(TW/a/b);
err_W = (X4 - X4W)./X4W;
W
err_W
And finally, using W2 == 0 (no assumption on X3)
%%%%
%%W: fit using w2 = 0 (no additional assumptions)
%%%%
M = [X2.*(1 - X1), -X2.*X3, X2.*X3.*(1 - 2*X1)];
W2 = M\(a*b*log(X4));
TW2 = M*W2;
X4W2 = exp(TW2/a/b);
err_W2 = (X4 - X4W2)./X4W2;
W2 = [W2(1), 0, W2(2), W2(3)].';
W2
err_W2
results
%%%%
%%compare results
%%%%
compare_W = [w, w2, W, W2];
compare_W
compare_err = 100*[err_m, err_m2, err_W, err_W2];
compare_err
hf = figure('WindowStyle', 'docked');
ha = axes;
hp = plot3(X1, X2, X4, X1, X2, X4m, X1, X2, X4m2, X1, X2, X4W, X1, X2, X4W2)
xlabel('X1')
ylabel('X2')
zlabel('X4')
legend('X4', 'X4m', 'X4m2', 'X4W', 'X4W2')
grid on;
title('compare fits')
You can use your judgment to see if this %error is reason able over the region of interest.
>> compare_W =
1.0e+08 *
3.813510730697298 -0.000491562357117 0.025845576531701 0.032553401777266
-0.000018277710575 0 -0.000018555355233 0
2.867011340403814 0.959509492664202 1.017723304845835 1.273754444212918
-0.947009230361176 0.960001055021319 0.991441774206119 1.240781494391939
>> compare_err =
25.3541 0 25.7751 0
9.5807 -12.2780 9.8547 -12.3620
-18.5631 -32.9458 -18.6725 -33.2918
-19.8587 -26.6898 -20.2522 -27.2932
-5.6106 -6.3826 -5.7995 -6.7560
19.3484 26.9156 19.2132 26.7386
0.7148 2.1690 0.9361 2.5826
0.2742 1.5628 0.5416 2.0342
-1.9625 -3.4741 -2.0987 -3.7206

カテゴリ

Help Center および File ExchangeInterpolation についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by