Warning: Variable 'rxTrainFrames' was not saved. For variables larger than 2GB use MAT-file version 7.3 or later
7 ビュー (過去 30 日間)
古いコメントを表示
How do i keep the rxTrainFrame into workspace? my code is
dataDirectory = 'E:\SNR-Dataset\Data-18-time'
frameDS = signalDatastore(dataDirectory,'SignalVariableNames',["frame","label"],'IncludeSubfolders',true,'FileExtensions','.mat');
frameDSTrans = transform(frameDS,@helperModClassIQAsPages);
splitPercentages = [percentTrainingSamples,percentValidationSamples,percentTestSamples];
[trainDSTrans,validDSTrans,testDSTrans] = helperModClassSplitData(frameDSTrans,splitPercentages);
% Gather the training and validation frames into the memory
trainFramesTall = tall(transform(trainDSTrans, @helperModClassReadFrame));
rxTrainFrames = gather(trainFramesTall);
rxTrainFrames = cat(4, rxTrainFrames{:});
save('rxTrainFrames.mat', 'rxTrainFrames', '-v7.3')
validFramesTall = tall(transform(validDSTrans, @helperModClassReadFrame));
rxValidFrames = gather(validFramesTall);
rxValidFrames = cat(4, rxValidFrames{:});
% Gather the training and validation labels into the memory
trainLabelsTall = tall(transform(trainDSTrans, @helperModClassReadLabel));
rxTrainLabels = gather(trainLabelsTall);
rxTrainLabels = removecats(rxTrainLabels);
validLabelsTall = tall(transform(validDSTrans, @helperModClassReadLabel));
rxValidLabels = gather(validLabelsTall);
rxValidLabels = removecats(rxValidLabels);
maxEpochs = 100;
miniBatchSize = 128;
options = helperModClassTrainingOptions(maxEpochs,miniBatchSize,...
numel(rxTrainLabels),rxValidFrames,rxValidLabels);
trainedNet5 = trainNetwork(rxTrainFrames,rxTrainLabels,trainedNet4 ,options);
save trainedNet5
0 件のコメント
回答 (1 件)
yanqi liu
2022 年 1 月 17 日
yes,sir,may be
save trainedNet5.mat trainedNet5 rxTrainFrames
then use
load trainedNet5.mat
to get it
2 件のコメント
yanqi liu
2022 年 1 月 17 日
yes,sir,may be use
save trainedNet5.mat trainedNet5 rxTrainFrames
to get file “trainedNet5.mat”
then,use
clear all;
load trainedNet5.mat
rxTrainFrames
check the rxTrainFrames
参考
カテゴリ
Help Center および File Exchange で Get Started with Statistics and Machine Learning Toolbox についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!