how to get tf answer for this problem?
2 ビュー (過去 30 日間)
古いコメントを表示
a=[40]
b=[0.05 1]
c=[1]
d=[0.5 1]
e=[0.8]
f=[1 1]
g=[0.1]
h=[0.04 1]
T1=tf(a,b)
T2=tf(c,d)
T3=tf(e,f)
T4=tf(g,h)
A=(T1*T2*T3)
B=(T1*T2*T4)
C=1+B+A
A/C
i want A to be like this 32/((1+.05s)(1+0.5s)(1+s)) is this possible
0 件のコメント
採用された回答
Star Strider
2022 年 1 月 12 日
Almost.
a=[40];
b=[0.05 1];
c=[1];
d=[0.5 1];
e=[0.8];
f=[1 1];
g=[0.1];
h=[0.04 1];
T1=tf(a,b);
T2=tf(c,d);
T3=tf(e,f);
T4=tf(g,h);
A=(T1*T2*T3)
Azpk = zpk(A)
B=(T1*T2*T4)
Bzpk = zpk(B)
C=1+B+A
Czpk = zpk(C)
AC = A/C
ACzpk = zpk(AC)
Amr = minreal(A)
Amrzpk = zpk(Amr)
Bmr = minreal(B)
Bmrzpk = zpk(Bmr)
Cmr = minreal(C)
Cmrzpk = zpk(Cmr)
ACmr = minreal(AC)
ACmrzpk = zpk(ACmr)
.
2 件のコメント
Star Strider
2022 年 1 月 12 日
My pleasure!
The form you need is not an option in any of the representations I looked through. The zpk representation is as close as it is possible to get. Dividing the transfer function by (s+20)^2 changes nothing about it.
If you absolutely must have that representation, you will need to write it yourself, or possibly use the Symbolic Math Toolbox. Special representations such as that are simply not possible in the Control System Toolbox.
s = tf('s');
a=[40];
b=[0.05 1];
c=[1];
d=[0.5 1];
e=[0.8];
f=[1 1];
g=[0.1];
h=[0.04 1];
T1=tf(a,b);
T2=tf(c,d);
T3=tf(e,f);
T4=tf(g,h);
A=(T1*T2*T3);
% Azpk = zpk(A);
B=(T1*T2*T4);
% Bzpk = zpk(B)
C=1+B+A;
% Czpk = zpk(C)
AC = A/C;
% ACzpk = zpk(AC)
% Amr = minreal(A)
% Amrzpk = zpk(Amr)
% Bmr = minreal(B)
% Bmrzpk = zpk(Bmr)
% Cmr = minreal(C)
% Cmrzpk = zpk(Cmr)
ACmr = minreal(AC);
ACmrzpk = zpk(ACmr)
.
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Startup and Shutdown についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!