Using Linear Mixed Models with two fixed factors and a random factor

8 ビュー (過去 30 日間)
Hari krishnan
Hari krishnan 2021 年 10 月 11 日
コメント済み: the cyclist 2021 年 10 月 11 日
I am trying to make a Linear Mixed Model to see if there is a statistical significance with two fixed factors ('ANTS and LABEL') with the ('STATE') as a random factor. Can anyone suggest to me how to proceed with such a model in Matlab?
Data file is attached alongside a sample code. Is the code right?
m = fitlme(data, 'RATE ~ (ANT*LABEL) + (1 | STATE)');
Fixed effects coefficients (95% CIs):
Name Estimate SE tStat DF pValue Lower Upper
{'(Intercept)' } 0.033027 0.0056879 5.8065 294 1.6533e-08 0.021832 0.044221
{'ANTS' } -0.00012262 0.00065256 -0.1879 294 0.85108 -0.0014069 0.0011617
{'LABEL_Poor nest' } -0.015508 0.0080189 -1.934 294 0.054076 -0.03129 0.00027342
{'ANTS:LABEL_Poor nest'} 0.00036122 0.0009203 0.3925 294 0.69497 -0.00145 0.0021724

採用された回答

the cyclist
the cyclist 2021 年 10 月 11 日
編集済み: the cyclist 2021 年 10 月 11 日
You can fit such a model using the fitlme function from the Statistics and Machine Learning Toolbox.
I think the following code fits the model you mentioned:
data = readtable('https://www.mathworks.com/matlabcentral/answers/uploaded_files/764231/Entry_rates.xlsx'); % You can just read in your local file
mdl = fitlme(data,'RATE ~ ANTS + LABEL + (1|STATE)')
mdl =
Linear mixed-effects model fit by ML Model information: Number of observations 298 Fixed effects coefficients 3 Random effects coefficients 11 Covariance parameters 2 Formula: RATE ~ 1 + ANTS + LABEL + (1 | STATE) Model fit statistics: AIC BIC LogLikelihood Deviance -1158.9 -1140.4 584.45 -1168.9 Fixed effects coefficients (95% CIs): Name Estimate SE tStat DF pValue Lower Upper {'(Intercept)' } 0.031647 0.0044726 7.0757 295 1.0864e-11 0.022844 0.040449 {'ANTS' } 5.8999e-05 0.00046026 0.12819 295 0.89809 -0.00084681 0.00096481 {'LABEL_Poor nest'} -0.012768 0.0039439 -3.2373 295 0.0013442 -0.020529 -0.0050059 Random effects covariance parameters (95% CIs): Group: STATE (11 Levels) Name1 Name2 Type Estimate Lower Upper {'(Intercept)'} {'(Intercept)'} {'std'} 7.5587e-18 NaN NaN Group: Error Name Estimate Lower Upper {'Res Std'} 0.034041 0.031415 0.036887
But I strongly recommend you read the documentation carefully, to understand how to specify the model you want to fit.
  6 件のコメント
Hari krishnan
Hari krishnan 2021 年 10 月 11 日
  1. ANTS is a categorical variable
  2. I am trying to predict RATE from ANTS and LABEL (with STATE as random)
the cyclist
the cyclist 2021 年 10 月 11 日
The first model I suggested treats ANTS as continuous numeric by default, so we need to convert it to categorical before putting it in the model.
This model has the interaction term as well:
data = readtable('https://www.mathworks.com/matlabcentral/answers/uploaded_files/764231/Entry_rates.xlsx'); % You can just read in your local file
data.ANTS = categorical(data.ANTS);
m = fitlme(data, 'RATE ~ (ANTS*LABEL) + (1 | STATE)')
m =
Linear mixed-effects model fit by ML Model information: Number of observations 298 Fixed effects coefficients 32 Random effects coefficients 11 Covariance parameters 2 Formula: RATE ~ 1 + ANTS*LABEL + (1 | STATE) Model fit statistics: AIC BIC LogLikelihood Deviance -1102.9 -977.18 585.44 -1170.9 Fixed effects coefficients (95% CIs): Name Estimate SE tStat DF pValue Lower Upper {'(Intercept)' } 0.03472 0.010729 3.2361 266 0.0013653 0.013595 0.055845 {'ANTS_2' } -0.00018056 0.014824 -0.01218 266 0.99029 -0.029369 0.029007 {'ANTS_3' } -0.0037793 0.014824 -0.25494 266 0.79897 -0.032967 0.025409 {'ANTS_4' } -0.005943 0.014824 -0.40089 266 0.68882 -0.035131 0.023245 {'ANTS_5' } -0.003487 0.014824 -0.23522 266 0.81422 -0.032675 0.025701 {'ANTS_6' } 0.0032408 0.014824 0.21861 266 0.82712 -0.025947 0.032429 {'ANTS_7' } -0.0024946 0.014824 -0.16828 266 0.86649 -0.031683 0.026693 {'ANTS_8' } -0.0020313 0.014824 -0.13703 266 0.89111 -0.031219 0.027157 {'ANTS_9' } -0.0075855 0.014824 -0.5117 266 0.60929 -0.036773 0.021602 {'ANTS_10' } -0.0038417 0.014824 -0.25915 266 0.79572 -0.03303 0.025346 {'ANTS_11' } -0.0023158 0.015589 -0.14855 266 0.88202 -0.033009 0.028378 {'ANTS_12' } -0.0037099 0.01672 -0.22188 266 0.82458 -0.03663 0.029211 {'ANTS_13' } -0.0022144 0.01672 -0.13244 266 0.89474 -0.035135 0.030706 {'ANTS_14' } 0.00054688 0.01752 0.031214 266 0.97512 -0.03395 0.035043 {'ANTS_15' } -0.0039004 0.01752 -0.22262 266 0.824 -0.038397 0.030596 {'ANTS_16' } -0.0043122 0.018583 -0.23205 266 0.81668 -0.040901 0.032277 {'LABEL_Poor nest' } -0.011158 0.014824 -0.75269 266 0.4523 -0.040346 0.01803 {'ANTS_2:LABEL_Poor nest' } -0.0077307 0.020714 -0.37322 266 0.70928 -0.048514 0.033053 {'ANTS_3:LABEL_Poor nest' } 9.4789e-05 0.020714 0.0045762 266 0.99635 -0.040689 0.040878 {'ANTS_4:LABEL_Poor nest' } -0.0033669 0.020965 -0.1606 266 0.87253 -0.044645 0.037911 {'ANTS_5:LABEL_Poor nest' } -0.0050268 0.020714 -0.24268 266 0.80844 -0.04581 0.035757 {'ANTS_6:LABEL_Poor nest' } -0.0076487 0.020714 -0.36926 266 0.71223 -0.048432 0.033135 {'ANTS_7:LABEL_Poor nest' } -0.0012082 0.020714 -0.05833 266 0.95353 -0.041992 0.039575 {'ANTS_8:LABEL_Poor nest' } 0.00011595 0.020714 0.0055978 266 0.99554 -0.040668 0.0409 {'ANTS_9:LABEL_Poor nest' } 0.0022824 0.020714 0.11019 266 0.91234 -0.038501 0.043066 {'ANTS_10:LABEL_Poor nest'} 0.00078623 0.020714 0.037957 266 0.96975 -0.039997 0.04157 {'ANTS_11:LABEL_Poor nest'} -0.0023263 0.021807 -0.10667 266 0.91513 -0.045264 0.040611 {'ANTS_12:LABEL_Poor nest'} -0.00027695 0.023423 -0.011824 266 0.99058 -0.046396 0.045842 {'ANTS_13:LABEL_Poor nest'} -0.0039373 0.023423 -0.16809 266 0.86664 -0.050056 0.042182 {'ANTS_14:LABEL_Poor nest'} 0.00067151 0.024566 0.027335 266 0.97821 -0.047696 0.049039 {'ANTS_15:LABEL_Poor nest'} 0.0014948 0.024566 0.06085 266 0.95152 -0.046873 0.049863 {'ANTS_16:LABEL_Poor nest'} 0.0053685 0.026081 0.20584 266 0.83707 -0.045983 0.05672 Random effects covariance parameters (95% CIs): Group: STATE (11 Levels) Name1 Name2 Type Estimate Lower Upper {'(Intercept)'} {'(Intercept)'} {'std'} 0 NaN NaN Group: Error Name Estimate Lower Upper {'Res Std'} 0.033928 0.031311 0.036764
Does that align better with the output you would expect, and can interpret?

サインインしてコメントする。

その他の回答 (0 件)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by