Speech recognition (Isolated words 1-9)

53 ビュー (過去 30 日間)
Chan 2011 年 9 月 10 日
コメント済み: Javier 2020 年 11 月 11 日
Hi there,
I'm an electronic student that doing speech recognition (Isolated words 1-9) system for my school project. This project is to take any speaker voice to recognize (One,Two,...,Eight,Nine) 9 words. All the word are isolated single word.
At the moment I have some coding for :
i. Saving the wav file from input (microphone)
%This program records the voice
function [norm_voice,h] = Voice_Rec(sample_freq)
option = 'n';
option_rec = 'n';
record_len = 3; %Record time length in seconds
sample_freq = 8192; %Sampling frequency in Hertz
sample_time = sample_freq * record_len;
'Get ready to record your voice'
name = input('Enter the file name you want to save the file with: ','s');
file_name = sprintf('%s.wav',name);
option_rec = input('Press y to record: ','s');
if option_rec=='y'
while option=='n',
input('Press enter when ready to record--> ');
record = wavrecord(sample_time, sample_freq); %Records the input through the sound card to the variable with specified sampling frequency
input('Press enter to listen the recorded voice--> ');
sound(record, sample_freq);
option = input('Press y to save or n to record again: ','s');
wavwrite(record, sample_freq, file_name); %Save the recorded data to a file with the specified file name in .wav format
norm_voice = normalize(voice_read);
norm_voice = downsmpl(norm_voice, sample_freq);
function vec = normalize(vec)
temp_vec = vec-mean(vec);
sum_temp_vec = sum(temp_vec.*temp_vec);
sqrt_temp_vec = sqrt(sum_temp_vec);
vec = (1/sqrt_temp_vec)*temp_vec;
function sampled = downsmpl(voice, freq)
y = freq/2;
while z<freq,
sampled(a) = sqrt(abs(voice(z)*voice(z+1)));
z = z+2;
sampled = sampled';
function [h_0,h_1] = daubcqf(N,TYPE)
% [h_0,h_1] = daubcqf(N,TYPE);
% Function computes the Daubechies' scaling and wavelet filters
% (normalized to sqrt(2)).
% Input:
% N : Length of filter (must be even)
% TYPE : Optional parameter that distinguishes the minimum phase,
% maximum phase and mid-phase solutions ('min', 'max', or
% 'mid'). If no argument is specified, the minimum phase
% solution is used.
% Output:
% h_0 : Minimal phase Daubechies' scaling filter
% h_1 : Minimal phase Daubechies' wavelet filter
% Example:
% N = 4;
% TYPE = 'min';
% [h_0,h_1] = daubcqf(N,TYPE)
% h_0 = 0.4830 0.8365 0.2241 -0.1294
% h_1 = 0.1294 0.2241 -0.8365 0.4830
if(nargin < 2),
TYPE = 'min';
if(rem(N,2) ~= 0),
error('No Daubechies filter exists for ODD length');
K = N/2;
a = 1;
p = 1;
q = 1;
h_0 = [1 1];
for j = 1:K-1,
a = -a * 0.25 * (j + K - 1)/j;
h_0 = [0 h_0] + [h_0 0];
p = [0 -p] + [p 0];
p = [0 -p] + [p 0];
q = [0 q 0] + a*p;
q = sort(roots(q));
qt = q(1:K-1);
if TYPE=='mid',
if rem(K,2)==1,
qt = q([1:4:N-2 2:4:N-2]);
qt = q([1 4:4:K-1 5:4:K-1 N-3:-4:K N-4:-4:K]);
h_0 = conv(h_0,real(poly(qt)));
h_0 = sqrt(2)*h_0/sum(h_0); %Normalize to sqrt(2);
h_0 = fliplr(h_0);
if(abs(sum(h_0 .^ 2))-1 > 1e-4)
error('Numerically unstable for this value of "N".');
h_1 = rot90(h_0,2);
ii. Perform FFT directly from input (microphone)
% An example showing how to obtain a speech signal from microphone
% and compute its Fourier Transform (FFT)
Fs = 10000; % Sampling Frequency (Hz)
Nseconds = 5; % Length of speech signal
fprintf('say a word immediately after hitting enter: ');
% Get time-domain speech signal from microphone
y = wavrecord(Nseconds*Fs, Fs, 'double');
% Plot time-domain signal
% Compute FFT
x = fft(y);
% Get response until Fs/2 (for frequency from Fs/2 to Fs, response is repeated)
x = x(1:floor(Nseconds*Fs/2));
% Plot magnitude vs. frequency
m = abs(x);
f = (0:length(x)-1)*(Fs/2)/length(x);
xlabel('Frequency (Hz)');
I have some sample coding about BOF and LPC but i not sure how it work since i still not fully understand the operation of them and i seem still missing out some of the library for them..
I know I still far away from the total aim I want for this project and I hope that maybe anyone can give me a hand guide me what step do I need still or mind to share me some references coding for my speech recognition.
Hope you understand my pain since our course only teaching matlab basis but not in details and I still not fully understand the process of speech recognition.
Any help or reply will be greatly appreciated!!!
Thanks in advanced!


Wayne King
Wayne King 2011 年 9 月 10 日
  4 件のコメント
Javier 2020 年 11 月 11 日
It appears the article is no longer available. I tried to enter and see it.


その他の回答 (1 件)

Brian Hemmat
Brian Hemmat 2019 年 12 月 30 日
編集済み: Brian Hemmat 2020 年 3 月 20 日
Spoken Digit Recognition with Wavelet Scattering and Deep Learning illustrates two diferent approaches to spoken digit recognition:
  • wavelet scattering + support vector machine
  • mel spectrograms + deep convolutional neural nets
Both methods achieve ~98% test accuracy.
Another approach, using LSTMs and acheiving ~97% accuracy: Sequential Feature Selection for Audio Features.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by