Too many input arguments while solving BVP using bvp4c

8 ビュー (過去 30 日間)
Anshuman Pal 2021 年 8 月 21 日
コメント済み: Star Strider 2021 年 8 月 21 日
Hello, I am trying to run the following chunk of code, which integrates a system of 11 ODEs with an eigenvalue to be fixed. I get a 'too many arguments' error on calling the function bvp_RHS(). I don't get why:
phif = 0.1; % total length
phit = 0.05;
alpha = 0.3;
C_init = 1e-2;
solinit = bvpinit(linspace(-phif/2, phif/2, 10), @(x)mat4init(x, phif), C_init);
options = bvpset('Stats','on','RelTol',1e-5);
sol = bvp4c(@bvp_RHS, @(yL,yR)bvp_BC(yL, yR, phit, alpha), solinit, options);
%-------------------------------------------------------------------------
function yinit = mat4init(x, phif)
yinit = [cos(pi/phif*x)
-pi/phif * sin(pi/phif*x)
0.1
0.1
0.1
-0.1
0.1
0
0
0
0
];
end
function dyds = bvp_RHS(y,C)
% Total 2+9=11 variables.
dyds = [ y(2)
-0.5*y(1)^3 - C*y(1) % -0.5*kappa^3 - C*kappa
y(6) % =tx
y(7) % =ty
y(8) % =tz
-y(3) + y(1)*y(9) % =-rx + kappa*nx
-y(4) + y(1)*y(10) % =-ry + kappa*ny
-y(5) + y(1)*y(11) % =-rz + kappa*nz
-y(1)*y(6) % =-kappa*tx
-y(1)*y(7) % =-kappa*ty
-y(1)*y(8) % =-kappa*tz
];
end
%-------------------------------------------------------------------------
function res = bvp_BC(yL, yR, phit, alpha)
% BCs at L and R boundaries, with constraint for eigenvalue C.
% Symmetrised BCs for r and t, so that L and R are at \pm phit/2.
res = [ yL(1)
yR(1)
yL(3)-cos(phit/2) % fix position: rx
yL(4)+sin(phit/2) % fix position: ry
yL(5) % fix position: rz
yR(3)-cos(phit/2) % fix position: rx
yR(4)-sin(phit/2) % fix position: ry
yR(5) % fix position: rz
yL(6)-sin(phit/2)*cos(alpha) % fix slope: tx
yL(7)-cos(phit/2)*cos(alpha) % fix slope: ty
yL(8)-sin(alpha) % fix slope: tz
yR(6)-sin(phit/2)*cos(alpha) % fix slope: tx
];
end

サインインしてコメントする。

採用された回答

Star Strider 2021 年 8 月 21 日
The problem with ‘bvp_RHS’ was actually not with it, but with the extra argument to bvpinit. Eliminating that then produced the error that ‘bvp_BC’ needs to return 11 boundary conditions, not 12 as it currently does. So, I commented-out the last one, and the code ran without error.
Check ‘bvp_BC’ and eliminate the extraneous boundary condition, since I might not have eliminated the correct one (I just wanted to see if the code otherwise worked).
phif = 0.1; % total length
phit = 0.05;
alpha = 0.3;
C_init = 1e-2;
solinit = bvpinit(linspace(-phif/2, phif/2, 100), @(x)mat4init(x, phif));
options = bvpset('Stats','on','RelTol',1e-5);
sol = bvp4c(@bvp_RHS, @(yL,yR)bvp_BC(yL, yR, phit, alpha), solinit, options)
Warning: Unable to meet the tolerance without using more than 909 mesh points.
The last mesh of 892 points and the solution are available in the output argument.
The maximum residual is 0.0191713, while requested accuracy is 1e-05.
The solution was obtained on a mesh of 2674 points. The maximum residual is 1.917e-02. There were 82392 calls to the ODE function. There were 435 calls to the BC function.
sol = struct with fields:
solver: 'bvp4c' x: [1×892 double] y: [11×892 double] yp: [11×892 double] stats: [1×1 struct]
figure
plot(sol.x, sol.y)
grid
legend(compose('$y_{%2d}$',1:11), 'Location','bestoutside', 'Interpreter','latex') %-------------------------------------------------------------------------
function yinit = mat4init(x, phif)
yinit = [cos(pi/phif*x)
-pi/phif * sin(pi/phif*x)
0.1
0.1
0.1
-0.1
0.1
0
0
0
0
];
end
function dyds = bvp_RHS(C,y)
% Total 2+9=11 variables.
dyds = [ y(2)
-0.5*y(1)^3 - C*y(1) % -0.5*kappa^3 - C*kappa
y(6) % =tx
y(7) % =ty
y(8) % =tz
-y(3) + y(1)*y(9) % =-rx + kappa*nx
-y(4) + y(1)*y(10) % =-ry + kappa*ny
-y(5) + y(1)*y(11) % =-rz + kappa*nz
-y(1)*y(6) % =-kappa*tx
-y(1)*y(7) % =-kappa*ty
-y(1)*y(8) % =-kappa*tz
];
end
%-------------------------------------------------------------------------
function res = bvp_BC(yL, yR, phit, alpha)
% BCs at L and R boundaries, with constraint for eigenvalue C.
% Symmetrised BCs for r and t, so that L and R are at \pm phit/2.
res = [ yL(1)
yR(1)
yL(3)-cos(phit/2) % fix position: rx
yL(4)+sin(phit/2) % fix position: ry
yL(5) % fix position: rz
yR(3)-cos(phit/2) % fix position: rx
yR(4)-sin(phit/2) % fix position: ry
yR(5) % fix position: rz
yL(6)-sin(phit/2)*cos(alpha) % fix slope: tx
yL(7)-cos(phit/2)*cos(alpha) % fix slope: ty
yL(8)-sin(alpha) % fix slope: tz
% yR(6)-sin(phit/2)*cos(alpha) % fix slope: tx
];
end
The output doesn’t look very interesting, however if it does what you want, that may not be an issue.
.
2 件のコメント表示非表示 1 件の古いコメント
Star Strider 2021 年 8 月 21 日
As always, my pleasure!
.

サインインしてコメントする。

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!