How to fit data to a second degree polynomial equation with 9 co-efficients
4 ビュー (過去 30 日間)
古いコメントを表示
Hello,
I have data for one independent variable and one dependent variable. I need to fit this data to a 9 coefficient second degree polynomial equation.
My equation is of the form Y = [A + Bx + C(x^2)]+[D + Ex + F(x^2)]+[G + Hx + I(x^2)]
x is the independent variable and Y is dependent. I have the values of Y for 10 values of x.
Any suggestions/ help/ recommendations would be greatly appreciated. Is there any way the value of the co-efficients can be found without having to guess the initial values of the co-efficients?
Thanks very much.
Nik.
0 件のコメント
採用された回答
Roger Wohlwend
2014 年 6 月 10 日
There is no unique solution for your equation. So you cannot estimate the coefficients.
What you can do is estimating the following equation: Y = R + Sx + T(x^2). Use linear regression, then it is not necessary to guess initial values.
2 件のコメント
Roger Wohlwend
2014 年 6 月 10 日
編集済み: Roger Wohlwend
2014 年 6 月 10 日
No, you can't. All you can do is fit the equation Y = R + Sx + T(x^2). In your original equation with 9 coefficients you have three constants, three linear terms and three quadratic terms:
R = A + D + G;
S = B + E + H;
T = C + F + I;
There is no unique solution to that. No algorithm can help you. Your problem is unsolvable.
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Polynomials についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!