Solving system of Nonlinear Equations

2 ビュー (過去 30 日間)
Saumil
Saumil 2011 年 7 月 22 日
Hi,
I might be missing something here: I am making use of the symbolic toolbox to solve the following system of equations. I have 3 equations of this kind:
f1 = Vs1 - Dpt2.*Z - V1;
f2 = Vs2 - Dpt5.*Z - V2;
f3 = Vs3 - Dpt7.*Z - V3;
Z, Vs1, Vs2 and Vs3 are simply integers/fractions
V1, V2, V3 are unknown and sym variables.
Dpt2, Dpt5 and Dpt7 are each functions of V1, V2 and V3. They are of the type: Sum terms of
((besselj(1,V1)).^2) .* ((besselj(0,V2)).^2) .* ((besselj(1,V3)).^2) + ........4 similar terms
and so on.
MATLAB solve() is not able to solve the equation. I have tried using Newton's method roughly by calculating the f1, f2 and f3 at some points and finding the change of f1, f2 and f3 w.r.t. V1, V2 and V3, but the inverse of the jacobian always goes to infinity.
Is there any another method to solve such equations?
Thanks a lot. I would appreciate any input. I can put the actual equations if required. I didn't put them yet because they are too long.

採用された回答

Yi Cao
Yi Cao 2011 年 7 月 22 日
You can try fsolve.
  1 件のコメント
Saumil
Saumil 2011 年 7 月 22 日
Thanks! It was tricky to use fsolve for symbolic equations, using subs(), but it seems to have done the trick. Thanks a lot!

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeSymbolic Math Toolbox についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by