display output k-means clustering, display output clustering as a image
3 ビュー (過去 30 日間)
古いコメントを表示
Hello,
I have a image, name image :test 3
I,map]=imread('test3','bmp');
I = ~I;
imshow(I,map);
[m n]=size(I)
P = [];
for i=1:m
for j=1:n
if I(i,j)==1
P = [P ; i j];
end
end
end
size(P)
MON=P;
[IDX,ctrs] = kmeans(MON,3)
as I plot the clusters in the image, resulting
I want to draw idx and ctrs in the image.
I don't know, How do I get back image with 3 new cluster(each cluster, different color in the image)
can anyone help ?
Thanks.
3 件のコメント
採用された回答
Dishant Arora
2014 年 3 月 13 日
編集済み: Dishant Arora
2014 年 3 月 13 日
[ I map] = imread('test3.bmp');
I = ~I;
imshow(I,map);
[m n]=size(I)
P = [];
for i=1:m
for j=1:n
if I(i,j)==1
P = [P ; i j];
end
end
end
size(P)
MON=P;
[IDX,ctrs] = kmeans(MON,3);
clusterImage = zeros(size(I));
clusteredImage(sub2ind(size(I) , P(:,1) , P(:,2)))=IDX;
imshow(label2rgb(clusteredImage))
9 件のコメント
その他の回答 (2 件)
rizwan
2015 年 3 月 16 日
Hi Experts, I am using the following code to find clusters in my image using K - Mean [ I map] = imread('D:\MS\Research\Classification Model\Research Implementation\EnhancedImage\ROIImage.jpeg'); I = ~I; imshow(I,map); [m n]=size(I) P = []; for i=1:m for j=1:n if I(i,j)==1 P = [P ; i j]; end end end size(P) MON=P; [IDX,ctrs] = kmeans(MON,3,'display', 'iter','MaxIter',500); clusterImage = zeros(size(I)); clusteredImage(sub2ind(size(I) , P(:,1) , P(:,2)))=IDX; imshow(label2rgb(clusteredImage))
The out put of the above code is
>> ImageEnhancement
m =
180
n =
317
ans =
20306 2
iter phase num sum
1 1 20306 9.40619e+07
2 1 2727 7.34318e+07
3 1 876 7.1216e+07
4 1 574 7.03212e+07
5 1 410 6.98473e+07
6 1 298 6.96024e+07
7 1 173 6.95038e+07
8 1 122 6.94633e+07
9 1 65 6.945e+07
10 1 45 6.9445e+07
11 1 30 6.9443e+07
12 1 15 6.94424e+07
13 1 8 6.94422e+07
14 1 3 6.94422e+07
15 1 1 6.94422e+07
16 2 0 6.94422e+07
Best total sum of distances = 6.94422e+07
Warning: Image is too big to fit on screen; displaying at 2%
Can any one explain this out put and how can i see proper out put of K- Mean???
I shall remain thank full You To
Regards
0 件のコメント
Yanyu Liang
2016 年 11 月 30 日
It shows how the kmeans is going at each iteration. "kmeans" implementation in matlab has two phases (you can think of it as two different approach to update assignment), so "phase" just tells if it is using first phase or second. "num" tells the number of points that change their assignment at that iteration (as you can see when it hits zero, the algorithm stops). "sum" is the objective value "kmeans" is trying to minimize.
0 件のコメント
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!