how can i make face clusters using k means after detecting face from video?Here is my face detecting code.

1 回表示 (過去 30 日間)
% Create a cascade detector object. faceDetector = vision.CascadeObjectDetector(); % Read a video frame and run the detector. videoFileReader = vision.VideoFileReader('visionface.avi'); videoFrame = step(videoFileReader); bbox = step(faceDetector, videoFrame);
% Draw the returned bounding box around the detected face. boxInserter = vision.ShapeInserter('BorderColor','Custom',... 'CustomBorderColor',[255 255 0]); videoOut = step(boxInserter, videoFrame,bbox); figure, imshow(videoOut), title('Detected face'); % Get the skin tone information by extracting the Hue from the video frame % converted to the HSV color space. [hueChannel,~,~] = rgb2hsv(videoFrame);
% Display the Hue Channel data and draw the bounding box around the face. figure, imshow(hueChannel), title('Hue channel data'); rectangle('Position',bbox(1,:),'LineWidth',2,'EdgeColor',[1 1 0]) % Detect the nose within the face region. The nose provides a more accurate % measure of the skin tone because it does not contain any background % pixels. noseDetector = vision.CascadeObjectDetector('Nose'); faceImage = imcrop(videoFrame,bbox); noseBBox = step(noseDetector,faceImage);
% The nose bounding box is defined relative to the cropped face image. % Adjust the nose bounding box so that it is relative to the original video % frame. noseBBox(1:2) = noseBBox(1:2) + bbox(1:2);
% Create a tracker object. tracker = vision.HistogramBasedTracker;
% Initialize the tracker histogram using the Hue channel pixels from the % nose. initializeObject(tracker, hueChannel, noseBBox);
% Create a video player object for displaying video frames. videoInfo = info(videoFileReader); videoPlayer = vision.VideoPlayer('Position',[100 100 videoInfo.VideoSize+30]);
% Track the face over successive video frames until the video is finished. while ~isDone(videoFileReader)
% Extract the next video frame
videoFrame = step(videoFileReader);
% RGB -> HSV
[hueChannel,~,~] = rgb2hsv(videoFrame);
% Track using the Hue channel data
bbox = step(tracker, hueChannel);
% Insert a bounding box around the object being tracked
videoOut = step(boxInserter, videoFrame, bbox);
% Display the annotated video frame using the video player object
step(videoPlayer, videoOut);
end
% Release resources release(videoFileReader); release(videoPlayer);
a
  3 件のコメント
prashanth
prashanth 2014 年 2 月 20 日
% Create a cascade detector object.
faceDetector = vision.CascadeObjectDetector();
% Read a video frame and run the detector.
videoFileReader = vision.VideoFileReader('visionface.avi');
videoFrame = step(videoFileReader);
bbox = step(faceDetector, videoFrame);
% Draw the returned bounding box around the detected face.
boxInserter = vision.ShapeInserter('BorderColor','Custom',...
'CustomBorderColor',[255 255 0]);
videoOut = step(boxInserter, videoFrame,bbox);
figure, imshow(videoOut), title('Detected face');
% Get the skin tone information by extracting the Hue from the video frame
% converted to the HSV color space.
[hueChannel,~,~] = rgb2hsv(videoFrame);
% Display the Hue Channel data and draw the bounding box around the face.
figure, imshow(hueChannel), title('Hue channel data');
rectangle('Position',bbox(1,:),'LineWidth',2,'EdgeColor',[1 1 0])
% Detect the nose within the face region. The nose provides a more accurate
% measure of the skin tone because it does not contain any background
% pixels.
noseDetector = vision.CascadeObjectDetector('Nose');
faceImage = imcrop(videoFrame,bbox);
noseBBox = step(noseDetector,faceImage);
% The nose bounding box is defined relative to the cropped face image.
% Adjust the nose bounding box so that it is relative to the original video
% frame.
noseBBox(1:2) = noseBBox(1:2) + bbox(1:2);
% Create a tracker object.
tracker = vision.HistogramBasedTracker;
% Initialize the tracker histogram using the Hue channel pixels from the
% nose.
initializeObject(tracker, hueChannel, noseBBox);
% Create a video player object for displaying video frames.
videoInfo = info(videoFileReader);
videoPlayer = vision.VideoPlayer('Position',[100 100 videoInfo.VideoSize+30]);
% Track the face over successive video frames until the video is finished.
while ~isDone(videoFileReader)
% Extract the next video frame
videoFrame = step(videoFileReader);
% RGB -> HSV
[hueChannel,~,~] = rgb2hsv(videoFrame);
% Track using the Hue channel data
bbox = step(tracker, hueChannel);
% Insert a bounding box around the object being tracked
videoOut = step(boxInserter, videoFrame, bbox);
% Display the annotated video frame using the video player object
step(videoPlayer, videoOut);
end
% Release resources
release(videoFileReader);
release(videoPlayer);
prashanth
prashanth 2014 年 2 月 20 日
I just detected face from video.Now i want to do clusters of faces.So Now i am planning to use kmeans cluster method.I dont know how cropped face should be stored in arrays and clustered.

サインインしてコメントする。

回答 (0 件)

カテゴリ

Help Center および File ExchangeTracking and Motion Estimation についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by