Linear Regression and Curve Fitting
4 ビュー (過去 30 日間)
古いコメントを表示
I have a model and some data I'd like to fit to it: X_t = B1*cos(2*pi*omega*t) + B2*sin(2*pi*omega*t) + eta_t
What function would I use to conduct linear regression here, to find B1 and B2?
0 件のコメント
採用された回答
Wayne King
2013 年 12 月 4 日
編集済み: Wayne King
2013 年 12 月 4 日
Fs = 1000;
t = 0:1/Fs:1-1/Fs;
y = 1.5*cos(2*pi*100*t)+0.5*sin(2*pi*100*t)+randn(size(t));
y = y(:);
X = ones(length(y),3);
X(:,2) = cos(2*pi*100*t)';
X(:,3) = sin(2*pi*100*t)';
beta = X\y;
beta(1) is the estimate of the constant term, beta(2) the estimate of B1 and beta(3) the estimate of B2.
If you set the random number generator to its default for reproducible results:
rng default
Fs = 1000;
t = 0:1/Fs:1-1/Fs;
y = 1.5*cos(2*pi*100*t)+0.5*sin(2*pi*100*t)+randn(size(t));
y = y(:);
X = ones(length(y),3);
X(:,2) = cos(2*pi*100*t)';
X(:,3) = sin(2*pi*100*t)';
beta = X\y;
The results are:
beta =
-0.0326
1.5284
0.4643
pretty good.
2 件のコメント
Wayne King
2013 年 12 月 4 日
Yes, that's correct. Make sure you flip it to a column vector if it isn't already. Obviously you have to change the frequencies in the design matrix to suit your problem.
If you are trying to estimate other frequencies you need to add two columns to the design matrix per frequency --- one for cosine and one for sine
その他の回答 (1 件)
Jos (10584)
2013 年 12 月 4 日
You might be interested in the function REGRESS
X = [cos(2*pi*omega*t(:)) sin(2*pi*omega*t(:))]
B = regress(Y,X)
If you want to specify an offset B(3), add a column of ones to X
X(:,3) = 1
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Linear and Nonlinear Regression についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!