neural network performance analysis
1 回表示 (過去 30 日間)
古いコメントを表示
Hello I have trained a neural network using house_dataset in matlab. When I trained the network through the following code the tr.best_tperf was reasonable: [inputs,targets] = house_dataset; hiddenLayerSize = 10; net = fitnet(hiddenLayerSize); net.divideParam.trainRatio = 70/100; net.divideParam.valRatio = 15/100; net.divideParam.testRatio = 15/100; [net,tr] = train(net,inputs,targets); outputs = net(inputs); performance = perform(net,targets,outputs)
however, when we extract the test dataset and consider the performance using these dataset the performance was unacceptable: tInd = tr.testInd; tstOutputs = net(inputs(tInd)); tstPerform = perform(net,targets(tInd),tstOutputs)
Could you please kindly explain the reason for this. Should we use another data division algorithm? best
1 件のコメント
Greg Heath
2013 年 11 月 11 日
編集済み: Greg Heath
2013 年 11 月 11 日
As you can see from my second answer, you didn't use (:,tInd) for the input indices.
Please accept the 2nd answer.
Greg
採用された回答
Greg Heath
2013 年 11 月 11 日
編集済み: Greg Heath
2013 年 11 月 11 日
result =
ntrial R2trn R2val R2tst
1.0000 0.8610 0.8746 0.8218
2.0000 0.8532 0.8778 0.8648
3.0000 0.8607 0.8503 0.8547
4.0000 0.8464 0.8942 0.8585
5.0000 0.8944 0.8883 0.8843
6.0000 0.8958 0.8423 0.9184
7.0000 0.9085 0.7988 0.9078
8.0000 0.8906 0.8690 0.9186
9.0000 0.8978 0.8637 0.9001
10.0000 0.8810 0.9125 0.9267
>> ytst = net(inputs(:,tr.testInd));
R2tstx = 1 - mse(ttst-ytst)/MSEtst00
R2tstx =
0.9267
Rtstx = sqrt(R2tstx)
Rtstx =
0.9627
How did you get 0.999?
0 件のコメント
その他の回答 (2 件)
Greg Heath
2013 年 11 月 11 日
Initialize the random number generator at the beginning. So we can compare, use
rng(0).
Also make 10 designs in a loop over random weight initializations obtained by using
net = configure(net,x,t);
[net tr ] = ...
Hope this helps,
Thank you for formally accepting my answer
Greg
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Sequence and Numeric Feature Data Workflows についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!