besselk
Modified Bessel function of the second kind for symbolic expressions
Syntax
Description
besselk(
returns the
modified Bessel function of the second
kind, Kν(z).nu
,z
)
Examples
Find Modified Bessel Function of Second Kind
Compute the modified Bessel functions of the second kind for these numbers. Because these numbers are not symbolic objects, you get floating-point results.
[besselk(0, 5), besselk(-1, 2), besselk(1/3, 7/4),... besselk(1, 3/2 + 2*i)]
ans = 0.0037 + 0.0000i 0.1399 + 0.0000i 0.1594 + 0.0000i -0.1620 - 0.1066i
Compute the modified Bessel functions of the second kind for the numbers converted to
symbolic objects. For most symbolic (exact) numbers, besselk
returns
unresolved symbolic calls.
[besselk(sym(0), 5), besselk(sym(-1), 2),... besselk(1/3, sym(7/4)), besselk(sym(1), 3/2 + 2*i)]
ans = [ besselk(0, 5), besselk(1, 2), besselk(1/3, 7/4), besselk(1, 3/2 + 2i)]
For symbolic variables and expressions, besselk
also returns
unresolved symbolic calls:
syms x y [besselk(x, y), besselk(1, x^2), besselk(2, x - y), besselk(x^2, x*y)]
ans = [ besselk(x, y), besselk(1, x^2), besselk(2, x - y), besselk(x^2, x*y)]
Special Values of Modified Bessel Function of Second Kind
If the first parameter is an odd integer multiplied by 1/2, besselk
rewrites the Bessel functions in terms of elementary functions:
syms x besselk(1/2, x)
ans = (2^(1/2)*pi^(1/2)*exp(-x))/(2*x^(1/2))
besselk(-1/2, x)
ans = (2^(1/2)*pi^(1/2)*exp(-x))/(2*x^(1/2))
besselk(-3/2, x)
ans = (2^(1/2)*pi^(1/2)*exp(-x)*(1/x + 1))/(2*x^(1/2))
besselk(5/2, x)
ans = (2^(1/2)*pi^(1/2)*exp(-x)*(3/x + 3/x^2 + 1))/(2*x^(1/2))
Solve Bessel Differential Equation for Bessel Functions
Solve this second-order differential equation. The solutions are the modified Bessel functions of the first and the second kind.
syms nu w(z) dsolve(z^2*diff(w, 2) + z*diff(w) -(z^2 + nu^2)*w == 0)
ans = C2*besseli(nu, z) + C3*besselk(nu, z)
Verify that the modified Bessel function of the second kind is a valid solution of the modified Bessel differential equation:
syms nu z isAlways(z^2*diff(besselk(nu, z), z, 2) + z*diff(besselk(nu, z), z)... - (z^2 + nu^2)*besselk(nu, z) == 0)
ans = logical 1
Differentiate Modified Bessel Function of Second Kind
Differentiate the expressions involving the modified Bessel functions of the second kind:
syms x y diff(besselk(1, x)) diff(diff(besselk(0, x^2 + x*y -y^2), x), y)
ans = - besselk(1, x)/x - besselk(0, x) ans = (2*x + y)*(besselk(0, x^2 + x*y - y^2)*(x - 2*y) +... (besselk(1, x^2 + x*y - y^2)*(x - 2*y))/(x^2 + x*y - y^2)) -... besselk(1, x^2 + x*y - y^2)
Find Bessel Function for Matrix Input
Call besselk
for the matrix A
and the value 1/2.
The result is a matrix of the modified Bessel functions besselk(1/2,
A(i,j))
.
syms x A = [-1, pi; x, 0]; besselk(1/2, A)
ans = [ -(2^(1/2)*pi^(1/2)*exp(1)*1i)/2, (2^(1/2)*exp(-pi))/2] [ (2^(1/2)*pi^(1/2)*exp(-x))/(2*x^(1/2)), Inf]
Plot Modified Bessel Functions of Second Kind
Plot the modified Bessel functions of the second kind for .
syms x y fplot(besselk(0:3, x)) axis([0 4 0 4]) grid on ylabel('K_v(x)') legend('K_0','K_1','K_2','K_3', 'Location','Best') title('Modified Bessel functions of the second kind')
Input Arguments
More About
Tips
Calling
besselk
for a number that is not a symbolic object invokes the MATLAB®besselk
function.At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix,
besselk(nu,z)
expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.
References
[1] Olver, F. W. J. “Bessel Functions of Integer Order.” Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.
[2] Antosiewicz, H. A. “Bessel Functions of Fractional Order.” Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.
Version History
Introduced in R2014a