eulergamma
Euler–Mascheroni constant
Syntax
Description
eulergamma represents the Euler–Mascheroni
constant. To get a floating-point approximation with the current
precision set by digits, use
vpa(eulergamma).
Examples
Represent and Numerically Approximate the Euler–Mascheroni Constant
Represent the Euler–Mascheroni constant using
eulergamma, which returns the symbolic form
eulergamma.
eulergamma
ans = eulergamma
Use eulergamma in symbolic calculations.
Numerically approximate your result with vpa.
a = eulergamma; g = a^2 + log(a) gVpa = vpa(g)
g = log(eulergamma) + eulergamma^2 gVpa = -0.21636138917392614801928563244766
Find the double-precision approximation of the Euler–Mascheroni constant using
double.
double(eulergamma)
ans =
0.5772Show Relation of Euler–Mascheroni Constant to Gamma Functions
Show the relations between the Euler–Mascheroni constant γ, digamma function Ψ, and gamma function Γ.
Show that .
-psi(sym(1))
ans = eulergamma
Show that .
syms x -subs(diff(gamma(x)),x,1)
ans = eulergamma
More About
Tips
For the value e = 2.71828…, called Euler’s number, use
exp(1)to return the double-precision representation. For the exact representation of Euler’s number e, callexp(sym(1)).For the other meaning of Euler’s numbers and for Euler’s polynomials, see
euler.
Version History
Introduced in R2014a