Main Content

t 位置-スケールを使用したコーシー分布の表現

この例では、t 位置-スケール確率分布オブジェクトを使用して標準外のパラメーター値をもつコーシー分布を操作する方法を示します。

手順 1. 確率分布オブジェクトを作成します。

自由度が nu = 1t 位置-スケール確率分布オブジェクトを作成します。mu = 3 を指定して位置パラメーターを 3 に設定し、sigma = 1 を指定してスケール パラメーターを 1 に設定します。

pd = makedist('tLocationScale','mu',3,'sigma',1,'nu',1)
pd = 
  tLocationScaleDistribution

  t Location-Scale distribution
       mu = 3
    sigma = 1
       nu = 1

手順 2. 記述統計を計算します。

オブジェクト関数を使用して、コーシー分布の記述統計を計算します。

med = median(pd)
med = 
3
r = iqr(pd)
r = 
2
m = mean(pd)
m = 
NaN
s = std(pd)
s = 
Inf

コーシー分布の中央値は位置パラメーターと等しく、四分位数間範囲はスケール パラメーターの 2 倍に等しくなります。平均と標準偏差は定義されていません。

手順 3. pdf を計算してプロットします。

コーシー分布の pdf を計算してプロットします。

x = -20:1:20;
y = pdf(pd,x);
plot(x,y,'LineWidth',2)

Figure contains an axes object. The axes object contains an object of type line.

pdf のピークは位置パラメーター mu = 3 が中心となります。

手順 4. コーシー乱数のベクトルを生成します。

t 位置-スケール確率分布オブジェクトに対して関数 random を使用して、10 個の乱数が含まれている列ベクトルをコーシー分布から生成します。

rng('default');  % For reproducibility
r = random(pd,10,1)
r = 10×1

    3.2678
    4.6547
    2.0604
    4.7322
    3.1810
    1.6649
    1.8471
    4.2466
    5.4647
    8.8874

手順 5. コーシー乱数の行列を生成します。

コーシー乱数の 5 行 5 列の行列を生成します。

r = random(pd,5,5)
r = 5×5

    2.2867    2.9692   -1.7003    5.5949    1.9806
    2.7421    2.7180    3.2210    2.4233    3.1394
    3.5966    3.9806    1.0182    6.4180    5.1367
    5.4791   15.6472    0.7558    2.8908    5.9031
    1.6863    4.0985    2.9934   13.9506    4.8792

参考

関連するトピック