predict
与えられた予測子の値から予測された値を計算
説明
例
標本データを読み込みます。
load fisheriris
列ベクトル species
は、3 種類のアヤメ (setosa、versicolor、virginica) で構成されています。double 行列 meas
は、花に関する 4 種類の測定値、がく片の長さと幅 (cm) と花弁の長さと幅 (cm) で構成されています。
データを table 配列に保存します。
t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4), ... VariableNames=["species","meas1","meas2","meas3","meas4"]); Meas = table([1 2 3 4]',VariableNames="Measurements");
反復予測モデルを当てはめます。ここで、測定が応答、種類が予測子変数となります。
rm = fitrm(t,"meas1-meas4~species",WithinDesign=Meas);
3 つの種類に対する応答を予測します。
Y = predict(rm,t([1 51 101],:))
Y = 3×4
5.0060 3.4280 1.4620 0.2460
5.9360 2.7700 4.2600 1.3260
6.5880 2.9740 5.5520 2.0260
標本データを読み込みます。
load longitudinalData
行列 Y
には 16 人の応答データが含まれています。応答は 5 つの時間点 (time = 0、2、4、6、8) で測定された薬の血中濃度です。Y
の各行は 1 人の個人に対応し、各列は 1 つの時間点に対応します。最初の 8 人の被験者は女性で、次の 8 人の被験者は男性です。このデータは、シミュレーションされたものです。
性別情報を格納する変数を定義します。
Gender = ['F' 'F' 'F' 'F' 'F' 'F' 'F' 'F' 'M' 'M' 'M' 'M' 'M' 'M' 'M' 'M']';
データを所定の table 配列形式で保存し、反復測定の解析を実行します。
t = table(Gender,Y(:,1),Y(:,2),Y(:,3),Y(:,4),Y(:,5), ... 'VariableNames',{'Gender','t0','t2','t4','t6','t8'});
被験者内変数を定義します。
Time = [0 2 4 6 8]';
反復予測モデルを当てはめます。ここで、血中濃度が応答、性別が予測子変数となります。
rm = fitrm(t,'t0-t8 ~ Gender','WithinDesign',Time);
中間の時点での応答を予測します。
time = linspace(0,8)'; Y = predict(rm,t([1 5 8 12],:), ... 'WithinModel','orthogonalcontrasts','WithinDesign',time);
推定された周辺平均に沿って予測値をプロットします。
plotprofile(rm,'Time','Group',{'Gender'}) hold on; plot(time,Y,'Color','k','LineStyle',':'); legend('Gender=F','Gender=M','Predictions') hold off
標本データを読み込みます。
load longitudinalData
行列 Y
には 16 人の応答データが含まれています。応答は 5 つの時間点 (time = 0、2、4、6、8) で測定された薬の血中濃度です。Y の各行は個人に、各列は時点に対応します。最初の 8 人の被験者は女性で、次の 8 人の被験者は男性です。このデータは、シミュレーションされたものです。
性別情報を格納する変数を定義します。
Gender = ['F' 'F' 'F' 'F' 'F' 'F' 'F' 'F' 'M' 'M' 'M' 'M' 'M' 'M' 'M' 'M']';
データを所定の table 配列形式で保存し、反復測定の解析を実行します。
t = table(Gender,Y(:,1),Y(:,2),Y(:,3),Y(:,4),Y(:,5), ... 'VariableNames',{'Gender','t0','t2','t4','t6','t8'});
被験者内変数を定義します。
Time = [0 2 4 6 8]';
反復予測モデルを当てはめます。ここで、血中濃度が応答、性別が予測子変数となります。
rm = fitrm(t,'t0-t8 ~ Gender','WithinDesign',Time);
中間の時点での応答を予測します。
time = linspace(0,8)'; [ypred,ypredci] = predict(rm,t([1 5 8 12],:), ... 'WithinModel','orthogonalcontrasts','WithinDesign',time);
予測値と、予測値の信頼区間を、推定された周辺平均に沿ってプロットします。
p1 = plotprofile(rm,'Time','Group',{'Gender'}); hold on; p2 = plot(time,ypred,'Color','k','LineStyle',':'); p3 = plot(time,ypredci(:,:,1),'k--'); p4 = plot(time,ypredci(:,:,2),'k--'); legend([p1;p2(1);p3(1)],'Gender=F','Gender=M','Predictions','Confidence Intervals') hold off
入力引数
反復測定モデル。RepeatedMeasuresModel
オブジェクトとして返します。
このオブジェクトのプロパティとメソッドについては、RepeatedMeasuresModel
を参照してください。
反復測定モデル rm
の予測子として使用する応答変数と被験者間要因の値を含む新しいデータ。テーブルとして指定します。tnew
には rm
の作成に使用するすべての被験者間要因が格納されていなければなりません。
名前と値の引数
オプションの引数のペアを Name1=Value1,...,NameN=ValueN
として指定します。ここで、Name
は引数名で、Value
は対応する値です。名前と値の引数は他の引数の後に指定しなければなりませんが、ペアの順序は重要ではありません。
R2021a より前では、名前と値をそれぞれコンマを使って区切り、Name
を引用符で囲みます。
例: ypred = predict(rm,tnew,'alpha',0.01)
予測値の信頼区間の有意水準。'alpha'
と 0 ~ 1 の範囲のスカラー値から構成されるコンマ区切りのペアとして指定します。信頼水準は 100*(1–alpha
)% です。
例: 'alpha',0.01
データ型: double
| single
被験者内要因のモデル。'WithinModel'
と以下のいずれかで構成されるコンマ区切りペアとして指定します。
'separatemeans'
— グループごとの平均を計算します。'orthogonalcontrasts'
— 被験者内計画が 1 つの数値因子 T で構成されている場合に有効です。これにより、最大次数が T(r-1) である直交多項式 (r は反復測定の回数) で構成されるモデルが指定されます。被験者内要因のモデル仕様を定義する文字ベクトルまたは string スカラー。
例: 'WithinModel','orthogonalcontrasts'
データ型: char
| string
被験者内要因の計画。'WithinDesign'
とベクトル、行列、テーブルのいずれかで構成されるコンマ区切りペアとして指定します。これにより、被験者内要因の値が RM.WithinDesign
プロパティと同じ形式で得られます。
例: 'WithinDesign','Time'
データ型: single
| double
| table
出力引数
バージョン履歴
R2014a で導入
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Web サイトの選択
Web サイトを選択すると、翻訳されたコンテンツにアクセスし、地域のイベントやサービスを確認できます。現在の位置情報に基づき、次のサイトの選択を推奨します:
また、以下のリストから Web サイトを選択することもできます。
最適なサイトパフォーマンスの取得方法
中国のサイト (中国語または英語) を選択することで、最適なサイトパフォーマンスが得られます。その他の国の MathWorks のサイトは、お客様の地域からのアクセスが最適化されていません。
南北アメリカ
- América Latina (Español)
- Canada (English)
- United States (English)
ヨーロッパ
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)