ドキュメンテーション

最新のリリースでは、このページがまだ翻訳されていません。 このページの最新版は英語でご覧になれます。

createns

最近傍探索モデル オブジェクトの作成

説明

NS = createns(X) は、学習データが格納されている n 行 K 列の数値行列 X を使用して、ExhaustiveSearcher または KDTreeSearcher モデル オブジェクトのいずれかを作成します。

NS = createns(X,Name,Value) では、1 つ以上の名前と値のペアの引数を使用して追加オプションを指定します。たとえば、NSMethod を指定すると、作成するオブジェクトのタイプを決定できます。

すべて折りたたむ

フィッシャーのアヤメのデータセットを読み込みます。

load fisheriris
X = meas;
[n,k] = size(X)
n = 150
k = 4

X には 150 個の観測値と 4 つの予測子があります。

データセット全体を学習データとして使用して、網羅的最近傍探索モデルを準備します。

Mdl1 = ExhaustiveSearcher(X)
Mdl1 = 
  ExhaustiveSearcher with properties:

         Distance: 'euclidean'
    DistParameter: []
                X: [150x4 double]

Mdl1ExhaustiveSearcher モデル オブジェクトで、プロパティがコマンド ウィンドウに表示されます。このオブジェクトには、距離計量など、学習済みアルゴリズムに関する情報が格納されています。プロパティの値は、ドット表記を使用して変更できます。

または、createns を使用し、探索法として 'exhaustive' を指定することによっても、網羅的最近傍探索モデルを準備できます。

Mdl2 = createns(X,'NSMethod','exhaustive')
Mdl2 = 
  ExhaustiveSearcher with properties:

         Distance: 'euclidean'
    DistParameter: []
                X: [150x4 double]

Mdl2ExhaustiveSearcher モデル オブジェクトでもあり、Mdl1 と等価です。

一連のクエリ データに対する最近傍を X から探索するには、ExhaustiveSearcher モデル オブジェクトとクエリ データを knnsearch または rangesearch に渡します。

ユークリッド距離を使用する 4 次元の Kd 木を成長させます。

フィッシャーのアヤメのデータセットを読み込みます。

load fisheriris
X = meas;
[n,k] = size(X)
n = 150
k = 4

X には 150 個の観測値と 4 つの予測子があります。

データセット全体を学習データとして使用して、4 次元の Kd 木を成長させます。

Mdl1 = KDTreeSearcher(X)
Mdl1 = 
  KDTreeSearcher with properties:

       BucketSize: 50
         Distance: 'euclidean'
    DistParameter: []
                X: [150x4 double]

Mdl1KDTreeSearcher モデル オブジェクトで、プロパティがコマンド ウィンドウに表示されます。このオブジェクトには、距離計量など、成長した 4 次元 Kd 木に関する情報が格納されています。プロパティの値は、ドット表記を使用して変更できます。

または、createns を使用して Kd 木を成長させることができます。

Mdl2 = createns(X)
Mdl2 = 
  KDTreeSearcher with properties:

       BucketSize: 50
         Distance: 'euclidean'
    DistParameter: []
                X: [150x4 double]

Mdl2KDTreeSearcher モデル オブジェクトでもあり、Mdl1 と等価です。X には 4 つの列があり、既定の距離計量はユークリッドであるため、createns は既定では KDTreeSearcher モデルを作成します。

一連のクエリ データに対する最近傍を X から探索するには、KDTreeSearcher モデル オブジェクトとクエリ データを knnsearch または rangesearch に渡します。

指数が 5 のミンコフスキー距離を使用して Kd 木を成長させます。

フィッシャーのアヤメのデータセットを読み込みます。花弁の寸法を格納する変数を作成します。

load fisheriris
X = meas(:,3:4);

Kd 木を成長させます。指数が 5 のミンコフスキー距離を指定します。

Mdl = createns(X,'Distance','minkowski','P',5)
Mdl = 
  KDTreeSearcher with properties:

       BucketSize: 50
         Distance: 'minkowski'
    DistParameter: 5
                X: [150x2 double]

X には 2 つの列があり、距離計量がミンコフスキーであるため、createns は既定では KDTreeSearcher モデル オブジェクトを作成します。

関数 createns を使用して、網羅的探索モデル オブジェクトを作成します。k 最近傍を探索するため、オブジェクトとクエリ データを関数 knnsearch に渡します。

フィッシャーのアヤメのデータセットを読み込みます。

load fisheriris

クエリ セットとして使用するため、5 つのアヤメのデータを無作為に予測子データから抽出します。

rng('default');             % For reproducibility
n = size(meas,1);           % Sample size
qIdx = randsample(n,5);     % Indices of query data
X = meas(~ismember(1:n,qIdx),:);
Y = meas(qIdx,:);

学習データを使用して網羅的最近傍探索モデルを準備します。最近傍の探索にマハラノビス距離を指定します。

Mdl = createns(X,'Distance','mahalanobis')
Mdl = 
  ExhaustiveSearcher with properties:

         Distance: 'mahalanobis'
    DistParameter: [4x4 double]
                X: [145x4 double]

距離計量がマハラノビスであるため、createns は既定では ExhaustiveSearcher モデル オブジェクトを作成します。

マハラノビス距離の計算には、学習データ内の予測子 (列) の共分散行列が使用されます。この値を表示するには、Mdl.DistParameter を使用します。

Mdl.DistParameter
ans = 4×4

    0.6547   -0.0368    1.2320    0.5026
   -0.0368    0.1914   -0.3227   -0.1193
    1.2320   -0.3227    3.0671    1.2842
    0.5026   -0.1193    1.2842    0.5800

求める学習データ (Mdl.X) のインデックスは、クエリ データ (Y) の各点における 2 つの最近傍です。

IdxNN = knnsearch(Mdl,Y,'K',2)
IdxNN = 5×2

     5     6
    98    95
   104   128
   135    65
   102   115

IdxNN の各行は、クエリ データの観測値に対応します。列の順序は、距離の昇順で並べ替えた最近傍の順序に対応します。たとえば、マハラノビス距離に基づくと、Y(3,:) の 2 番目の最近傍は X(128,:) になります。

入力引数

すべて折りたたむ

学習データ。数値行列を指定します。X には、それぞれが観測値 (インスタンスまたは事例) に対応する n 個の行と、それぞれが予測子 (特徴) に対応する K 個の列が含まれます。

データ型: single | double

名前と値のペアの引数

オプションの Name,Value 引数のコンマ区切りペアを指定します。Name は引数名で、Value は対応する値です。Name は引用符で囲まなければなりません。Name1,Value1,...,NameN,ValueN のように、複数の名前と値のペアの引数を、任意の順番で指定できます。

例: NS = createns(X,'Distance','mahalanobis') は、最近傍を探索するときにマハラノビス距離計量を使用する ExhaustiveSearcher モデル オブジェクトを作成します。

網羅的および Kd 木最近傍探索モデルの場合

すべて折りたたむ

作成するオブジェクトのタイプを定義するために使用される最近傍検索法。'NSMethod''kdtree' または 'exhaustive' から構成されるコンマ区切りのペアとして指定します。

  • 'kdtree'createns は Kd 木アルゴリズムを使用して KDTreeSearcher モデル オブジェクトを作成します。

  • 'exhaustive'createns は網羅的探索アルゴリズムを使用して ExhaustiveSearcher モデル オブジェクトを作成します。

次の 3 つの条件が満たされる場合、既定値は 'kdtree' です。

  • X の列数 (K) が 10 以下である (つまり、K ≤ 10)。

  • X がスパースでない

  • Distance'euclidean''cityblock''chebychev' または 'minkowski' である。

それ以外の場合、既定値は 'exhaustive' です。

例: 'NSMethod','exhaustive'

以後のクエリ点について最近傍を探索するために knnsearch または rangesearch を呼び出すときに使用する距離計量。'Distance' と、文字ベクトルまたは string スカラーによる距離計量名、または関数ハンドルから構成されるコンマ区切りのペアとして指定します。

両方のタイプの最近傍探索モデルについて、createns は次の距離計量をサポートします。

説明
'chebychev'チェビシェフ距離 (最大座標差)。
'cityblock'市街地距離。
'euclidean'ユークリッド距離。
'minkowski'ミンコフスキー距離。既定の指数は 2 です。異なる指数を指定するには、名前と値のペアの引数 'P' を使用します。

createns が網羅的探索アルゴリズムを使用する ('NSMethod''exhaustive') 場合、createns は次の距離計量もサポートします。

説明
'correlation'1 から観測値間の標本線形相関を減算 (値の系列として処理)
'cosine'(行ベクトルとして扱われる) 観測値間の夾角の余弦を 1 から減算
'hamming'ハミング距離 (異なる座標の比率)
'jaccard'1 からジャカード係数 (異なる非ゼロ座標の比率) を減算
'mahalanobis'マハラノビス距離
'seuclidean'標準化されたユークリッド距離
'spearman'1 から観測値間の標本スピアマン順位相関係数を減算 (値の系列として処理)

createns が網羅的探索アルゴリズムを使用する ('NSMethod''exhaustive') 場合、@ を使用してカスタム距離計量の関数ハンドル (たとえば @distfun) を指定することもできます。カスタムな距離関数は、次のようになっていなければなりません。

  • function D2 = distfun(ZI,ZJ) という形式になっている。

  • 次の引数を受け入れる。

    • X またはクエリ点 Y の 1 行が含まれている 1 行 K 列のベクトル ZI。K は X の列数です。

    • X または Y の複数行が含まれている m 行 K 列の行列 ZJ。m は正の整数です。

  • m 行 1 列の距離のベクトル D2 を返す。D2(j) は、観測値 ZIZJ(j,:) の間の距離です。

詳細は、距離計量を参照してください。

例: 'Distance','minkowski'

ミンコフスキー距離計量の指数。'P' と正のスカラー値をコンマで区切って指定します。この引数は、'Distance''minkowski' である場合のみ有効です。

例: 'P',3

データ型: single | double

網羅的最近傍探索モデルの場合

すべて折りたたむ

マハラノビス距離計量の共分散行列。'Cov' と K 行 K 列の正定行列から構成されるコンマ区切りのペアとして指定します。K は X の列数です。この引数は、'Distance''mahalanobis' である場合のみ有効です。

例: 'Cov',eye(3)

データ型: single | double

標準化されたユークリッド距離計量のスケール パラメーター値。'Scale' と長さ K の非負の数値ベクトルから構成されるコンマ区切りのペアとして指定します。K は X の列数です。学習データとクエリ データの間の距離は、対応する Scale の要素を使用してスケーリングされます。この引数は、'Distance''seuclidean' である場合のみ有効です。

例: 'Scale',quantile(X,0.75) - quantile(X,0.25)

データ型: single | double

Kd 木を使用する最近傍探索モデルの場合

すべて折りたたむ

Kd 木の各葉ノードにおける最大データ点数。'BucketSize' と正の整数をコンマで区切って指定します。

この引数は、KDTreeSearcher モデル オブジェクトを作成する場合のみ有効です。

例: 'BucketSize',10

データ型: single | double

出力引数

すべて折りたたむ

最近傍探索モデル。ExhaustiveSearcher モデル オブジェクトまたは KDTreeSearcher モデル オブジェクトとして返されます。

最近傍探索モデル オブジェクトを作成すると、knnsearch による最近傍探索または rangesearch による半径探索を実行して、クエリ データに対する学習データの近傍点を探索できます。

R2010a で導入