Main Content

ミニマックス最適化

この例では、Optimization Toolbox™ のミニマックス最適化アルゴリズム fminimax を使用して非線形フィルターの設計問題を解く方法を説明します。この例を実行するには、Signal Processing Toolbox™ がインストールされていなければなりません。

有限精度パラメーターの設定

有限精度フィルターの設計の例を考えます。そのためには、フィルター設計パラメーター (カットオフ周波数や係数の数など) を指定するだけでは不十分です。設計が有限精度であるため、使用可能なビット数も指定しなければなりません。

nbits  = 8;         % How many bits have we to realize filter 
maxbin = 2^nbits-1; % Maximum number expressable in nbits bits
n      = 4;         % Number of coefficients (order of filter plus 1)
Wn     = 0.2;       % Cutoff frequency for filter
Rp     = 1.5;       % Decibels of ripple in the passband
w      = 128;       % Number of frequency points to take

まず連続設計

これは連続フィルター設計です。cheby1 を使用しますが、ellipyulewalk、または remez を使用することもできます。

[b1,a1] = cheby1(n-1,Rp,Wn); 

[h,w] = freqz(b1,a1,w); % Frequency response
h = abs(h);             % Magnitude response
plot(w, h)
title('Frequency response using non-integer variables')

x = [b1,a1];            % The design variables

フィルター係数の範囲の設定

最大値と最小値に範囲を設定します。

if (any(x < 0))
%   If there are negative coefficients - must save room to use a sign bit
%   and therefore reduce maxbin
    maxbin = floor(maxbin/2);
    vlb = -maxbin * ones(1, 2*n)-1;
    vub = maxbin * ones(1, 2*n); 
else
%   otherwise, all positive
    vlb = zeros(1,2*n); 
    vub = maxbin * ones(1, 2*n); 
end

係数のスケーリング

maxbin に等しい最大値を設定し、他のフィルター係数を適切にスケーリングします。

[m, mix] = max(abs(x)); 
factor =  maxbin/m; 
x =  factor * x;    % Rescale other filter coefficients
xorig = x;

xmask = 1:2*n;
% Remove the biggest value and the element that controls D.C. Gain
% from the list of values that can be changed. 
xmask(mix) = [];
nx = 2*n;

最適化基準の設定

optimoptions を使用して、実行時間を短縮するために終了基準を適度に高い値に調整します。また、反復ごとに結果の表示をオンにします。

options = optimoptions('fminimax', ...
    'StepTolerance', 0.1, ...
    'OptimalityTolerance', 1e-4,...
    'ConstraintTolerance', 1e-6, ...
    'Display', 'iter');

最大絶対値の最小化

最大絶対値を最小にしなければならないため、options.MinAbsMax を周波数点の数に設定します。

if length(w) == 1
   options = optimoptions(options,'AbsoluteMaxObjectiveCount',w);
else
   options = optimoptions(options,'AbsoluteMaxObjectiveCount',length(w));
end

最適化のための最初の値の削除

FMINIMAX を呼び出すことで、最初の値の離散化と削除を行い、最適化を実行します。

[x, xmask] = elimone(x, xmask, h, w, n, maxbin)
x = 1×8

    0.5441    1.6323    1.6323    0.5441   57.1653 -127.0000  108.0000  -33.8267

xmask = 1×6

     1     2     3     4     5     8

niters = length(xmask); 
disp(sprintf('Performing %g stages of optimization.\n\n', niters));
Performing 6 stages of optimization.
for m = 1:niters
    fun = @(xfree)filtobj(xfree,x,xmask,n,h,maxbin); % objective
    confun = @(xfree)filtcon(xfree,x,xmask,n,h,maxbin); % nonlinear constraint
    disp(sprintf('Stage: %g \n', m));
    x(xmask) = fminimax(fun,x(xmask),[],[],[],[],vlb(xmask),vub(xmask),...
        confun,options);
    [x, xmask] = elimone(x, xmask, h, w, n, maxbin);
end
Stage: 1 
                  Objective        Max     Line search     Directional 
 Iter F-count         value    constraint   steplength      derivative   Procedure 
    0      8              0    0.00329174                                            
    1     17      0.0001845      3.34e-07            1          0.0143     

Local minimum possible. Constraints satisfied.

fminimax stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are 
satisfied to within the value of the constraint tolerance.
Stage: 2 
                  Objective        Max     Line search     Directional 
 Iter F-count         value    constraint   steplength      derivative   Procedure 
    0      7              0     0.0414182                                            
    1     15        0.01649     0.0002558            1           0.261     
    2     23        0.01544     6.126e-07            1         -0.0282    Hessian modified  

Local minimum possible. Constraints satisfied.

fminimax stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are 
satisfied to within the value of the constraint tolerance.
Stage: 3 
                  Objective        Max     Line search     Directional 
 Iter F-count         value    constraint   steplength      derivative   Procedure 
    0      6              0     0.0716961                                            
    1     13        0.05943    -1.156e-11            1           0.776     

Local minimum possible. Constraints satisfied.

fminimax stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are 
satisfied to within the value of the constraint tolerance.
Stage: 4 
                  Objective        Max     Line search     Directional 
 Iter F-count         value    constraint   steplength      derivative   Procedure 
    0      5              0      0.129938                                            
    1     11        0.04278     2.937e-10            1           0.183     

Local minimum possible. Constraints satisfied.

fminimax stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are 
satisfied to within the value of the constraint tolerance.
Stage: 5 
                  Objective        Max     Line search     Directional 
 Iter F-count         value    constraint   steplength      derivative   Procedure 
    0      4              0     0.0901749                                            
    1      9        0.03867    -4.951e-11            1           0.256     

Local minimum possible. Constraints satisfied.

fminimax stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are 
satisfied to within the value of the constraint tolerance.
Stage: 6 
                  Objective        Max     Line search     Directional 
 Iter F-count         value    constraint   steplength      derivative   Procedure 
    0      3              0       0.11283                                            
    1      7        0.05033    -1.249e-16            1           0.197     

Local minimum possible. Constraints satisfied.

fminimax stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are 
satisfied to within the value of the constraint tolerance.

最も近い整数値のチェック

最も近い値によってフィルターの機能が向上するかどうか確認します。

xold = x;
xmask = 1:2*n;
xmask([n+1, mix]) = [];
x = x + 0.5; 
for i = xmask
    [x, xmask] = elimone(x, xmask, h, w, n, maxbin);
end
xmask = 1:2*n;
xmask([n+1, mix]) = [];
x = x - 0.5;
for i = xmask
    [x, xmask] = elimone(x, xmask, h, w, n, maxbin);
end
if any(abs(x) > maxbin)
  x = xold; 
end

周波数応答の比較

まず、フィルターの周波数応答をプロットし、そのフィルターを、係数が切り上げまたは切り捨てられるフィルターと比較します。

subplot(211)
bo = x(1:n); 
ao = x(n+1:2*n); 
h2 = abs(freqz(bo,ao,128));
plot(w,h,w,h2,'o')
title('Optimized filter versus original')

xround = round(xorig)
xround = 1×8

     1     2     2     1    57  -127   108   -34

b = xround(1:n); 
a = xround(n+1:2*n); 
h3 = abs(freqz(b,a,128));
subplot(212)
plot(w,h,w,h3,'+')
title('Rounded filter versus original')

fig = gcf;
fig.NextPlot = 'replace';

参考

関連するトピック