copy
Description
Examples
Sample SE(2) State Space Using Gaussian State Sampler
Sample an SE(2) state space using a Gaussian state sampler, and observe the impact of the sampler parameter values on the sampling results.
Set the seed value to ensure you generate the same results.
rng(50,"twister");
Create a simple occupancy map with a narrow passage.
map = binaryOccupancyMap; occupied = [5*ones(9,1),[1; 2; 3; 4; 5; 7; 8; 9; 10]]; setOccupancy(map,occupied,1); figure(Position=[0, 0, 200, 200]) show(map)
Define the lower and upper limits of the state space variables x
, y
, and theta
from the occupancy map.
x = map.XWorldLimits; y = map.YWorldLimits; theta = [-pi pi];
Create a state space SE(2) object using the specified state space variables. Check the validity of states in the input state space by using a state validator. Set the validation distance to 0.01.
ss = stateSpaceSE2([x; y; theta]); sv = validatorOccupancyMap(ss,Map=map); sv.ValidationDistance = 0.01;
Sample State Space Using Gaussian State Sampler
Create a Gaussian state sampler with default parameter values. By default:
The maximum number of attempts that the sampler must take for finding the state samples is set to 10.
The standard deviation values along the and directions are set to 0.1, 0.1, and 0.0628, respectively.
sampler_orig = stateSamplerGaussian(sv)
sampler_orig = stateSamplerGaussian with properties: StateSpace: [1x1 stateSpaceSE2] StateValidator: [1x1 validatorOccupancyMap] StandardDeviation: [0.1000 0.1000 0.0628] MaxAttempts: 10
Generate 40 samples for motion planning from the input state space.
states_orig = sample(sampler_orig,40);
You can generate optimal samples by modifying the maximum number of attempts and standard deviation values. If the samples are scattered all over the input space, increase the maximum number of attempts and the standard deviation values to concentrate the state samples around the obstacle boundary.
Vary Maximum Number of Attempts
Create copies of the original state sampler object and modify the maximum number of attempts, property of the sampler, MaxAttempts,
to study its impact on the sampling results. Set the standard deviation values to default values.
Set the maximum number of attempts to find valid samples to 100, and generate 40 new samples from the input state space.
sampler_2 = copy(sampler_orig); sampler_2.MaxAttempts = 100; states_2 = sample(sampler_2,40);
Set the maximum number of attempts to find valid samples to 200, and generate 40 new samples from the input state space.
sampler_3 = copy(sampler_orig); sampler_3.MaxAttempts = 200; states_3 = sample(sampler_3,40);
Display the results using the helperDisplayStates
helper function. Note that, as the number of attempts increases, the samples concentrate more around the obstacle boundary.
helperDisplayStates(map,states_orig,sampler_2,states_2,sampler_3,states_3,"MaxAttempts");
Vary Standard Deviation
Create copies of the original state sampler object and modify the standard deviation, property of the sampler, StandardDeviation,
to study its impact on the sampling results. Set the maximum number of attempts to 200.
Generate 40 samples with the default standard deviation values.
sampler_orig.MaxAttempts = 200; states_orig = sample(sampler_orig,40);
Set the standard deviation values to [0.01 0.01 0.06]. Generate 40 new samples from the input state space.
sampler_4 = copy(sampler_orig); sampler_4.StandardDeviation = [0.01 0.01 0.06]; states_4 = sample(sampler_4,40);
Set the standard deviation values to [0.5 0.5 0.06]
. Generate 40 new samples from the input state space.
sampler_5 = copy(sampler_orig); sampler_5.StandardDeviation = [0.5 0.5 0.06]; states_5 = sample(sampler_5,40);
Display the results using the helperDisplayStates
helper function. Note that, as you increase the standard deviation values, the samples concentrate more around the obstacle boundary. However, if the standard deviation values are greater than the width of the narrow passages in the input space, the sampler generates incorrect results.
helperDisplayStates(map,states_orig,sampler_4,states_4,sampler_5,states_5,"Std.Deviation");
Helper Function
helperDisplayStates
displays results using a custom figure window.
function helperDisplayStates(map,states_orig,sampler_2,states_2,sampler_3,states_3,select) if select == "MaxAttempts" title_1 = "MaxAttempts = 10 (Default value)"; title_2 = strcat("MaxAttempts = ",num2str(sampler_2.MaxAttempts)); title_3 = strcat("MaxAttempts = ",num2str(sampler_3.MaxAttempts)); elseif select == "Std.Deviation" title_1 = "StandardDeviation = [0.1 0.1 0.06] (Default value)"; title_2 = strcat("StandardDeviation = [0.01 0.01 0.06]"); title_3 = strcat("StandardDeviation = [0.5 0.5 0.06]"); end fig_1 = figure(Position=[0 0 700 300]); movegui("center") panel_1 = uipanel(fig_1, ... Position=[0 0 0.33 1], ... Title=title_1); hPlot1 = axes(panel_1); show(map,Parent=hPlot1); hold on; plot(states_orig(:,1),states_orig(:,2),plannerLineSpec.state{:}) hold off panel_2 = uipanel(fig_1, ... Position=[0.33 0 0.33 1], ... Title=title_2); hPlot2 = axes(panel_2); show(map,Parent=hPlot2); hold on; plot(states_2(:,1),states_2(:,2),plannerLineSpec.state{:}) hold off panel_3 = uipanel(fig_1, ... Position=[0.66 0 0.33 1], ... Title=title_3); hPlot3 = axes(panel_3); show(map,Parent=hPlot3); hold on; plot(states_3(:,1),states_3(:,2),plannerLineSpec.state{:}) hold off end
Modify Gaussian State Sampler Parameters and Compare Results
Modify one or more parameters of a Gaussian state sampler and compare its effect on motion planning results. To accomplish this, you can create a single instance of the Gaussian state sampler object, and then, use the copy
function of the stateSamplerGaussian
object to create a deep copy of the existing object instance, modify the desired parameters, and use it with the planner to generate different results.
Set the random number seed, to ensure repeatability.
rng(50,"twister");
Create Occupancy Map and Find State Variables
Load a probability occupancy grid into MATLAB® workspace.
load("narrowPassageMap.mat","narrowPassage");
Create an occupancy map from the input occupancy grid.
map = binaryOccupancyMap(narrowPassage,50);
Define the lower and upper limits of the state space variables x
, y
, and theta
from the occupancy map.
x = map.XWorldLimits; y = map.YWorldLimits; theta = [-pi pi];
Create Gaussian State Sampler
Create a state space SE(2) object using the specified state space variables. Check the validity of states in the input state space by using a state validator.
ss = stateSpaceSE2([x; y; theta]); sv = validatorOccupancyMap(ss,Map=map);
Create a Gaussian state sampler using the state validator. Check the default parameter values.
sampler_1 = stateSamplerGaussian(sv)
sampler_1 = stateSamplerGaussian with properties: StateSpace: [1x1 stateSpaceSE2] StateValidator: [1x1 validatorOccupancyMap] StandardDeviation: [0.1030 0.0644 0.0628] MaxAttempts: 10
Copy State Sampler and Modify Parameter Values
Create a copy of the first instance of the Gaussian state sampler.
sampler_2 = copy(sampler_1);
Modify the standard deviation and maximum attempts properties of the Gaussian state sampler.
sampler_2.StandardDeviation = [0.3 0.1 0.1]; sampler_2.MaxAttempts = 150;
Configure PRM Path Planner
Configure two PRM path planners. Use the original and the modified Gaussian state samplers to sample the input state space.
planner_1 = plannerPRM(ss,sv,StateSampler=sampler_1,MaxNumNodes=900);
planner_2 = plannerPRM(sampler_2.StateSpace,sampler_2.StateValidator, ...
StateSampler=sampler_2,MaxNumNodes=900);
Find Optimal Path Between Two States
Specify the start point and the goal point in the input state space.
startPose = [1 1 0]; goalPose = [9 1 0];
Compute the optimal path between the start point and the goal point using the PRM path planners.
[pathObj_1,info_1] = plan(planner_1,startPose,goalPose); [pathObj_2,info_2] = plan(planner_2,startPose,goalPose);
Compare Results
Plot the results obtained using the two different Gaussian state samplers for motion planning. Use the plannerLineSpec.start
and plannerLineSpec.goal
functions for plotting the start and goal points, respectively. If the planner with default parameters has found an optimal path between the start and goal states, plot the results. Use the plannerLineSpec.path
function to specify the default color and line properties for plotting the path.
figure show(map) hold on plot(startPose(1),startPose(2),plannerLineSpec.start{:}); plot(goalPose(1),goalPose(2),plannerLineSpec.goal{:}); if info_1.IsPathFound plot(pathObj_1.States(:,1),pathObj_1.States(:,2),plannerLineSpec.path{:}) title("Using Gaussian State Sampler with Default Parameters") legend else disp("Path not found. Try modifying validator, sampler or planner parameters."); end hold off
Plot the results obtained using the Gaussian state sampler with custom parameter values.
figure show(map) hold on plot(startPose(1),startPose(2),plannerLineSpec.start{:}); plot(goalPose(1),goalPose(2),plannerLineSpec.goal{:}); if info_2.IsPathFound plot(pathObj_2.States(:,1),pathObj_2.States(:,2),plannerLineSpec.path{:}) title("Using Gaussian State Sampler with Custom Parameters") legend else disp("Path not found. Try modifying validator, sampler or planner parameters."); end hold off
Input Arguments
sampler1
— State sampler object
stateSamplerGaussian
object
State sampler object, specified as a stateSamplerGaussian
object.
Output Arguments
sampler2
— Copy of state sampler object
stateSamplerGaussian
object
Copy of the state sampler object, returned as a stateSamplerGaussian
object.
Version History
Introduced in R2023b
MATLAB コマンド
次の MATLAB コマンドに対応するリンクがクリックされました。
コマンドを MATLAB コマンド ウィンドウに入力して実行してください。Web ブラウザーは MATLAB コマンドをサポートしていません。
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)