このページの内容は最新ではありません。最新版の英語を参照するには、ここをクリックします。
cuSOLVER の例
この例では、cuSOLVER ライブラリを使用して、x
に対する連立線形方程式 Ax = B
を解きます。行列 A
および B
の行数は同じでなければなりません。A
がスカラーの場合、A\B
は A.\B
と等価です。A
が n 行 n 列の正方行列で、B
が n 行の行列である場合、x = A\B
は方程式 A*x = B
の解になります (存在する場合)。backslash
の MATLAB® 実装は次のようになります。
function [x] = backslash(A,b) if (isscalar(A)) x = coder.nullcopy(zeros(size(b))); else x = coder.nullcopy(zeros(size(A,2),size(b,2))); end x = A\b; end
カーネル作成用の backslash
の準備
GPU Coder™ は、ライブラリの呼び出しを生成するために特殊なプラグマを必要としません。前と同じように、CUDA® カーネルを生成する方法は 2 つあります。coder.gpu.kernelfun
および coder.gpu.kernel
です。この例では、coder.gpu.kernelfun
プラグマを利用して CUDA カーネルを生成します。変更した関数 backslash
は次のようになります。
function [x] = backslash(A,b) %#codegen if (isscalar(A)) x = coder.nullcopy(zeros(size(b))); else x = coder.nullcopy(zeros(size(A,2),size(b,2))); end coder.gpu.kernelfun() x = A\b; end
メモ
算術演算子および関数を cuSOLVER ライブラリ実装に置き換える場合、入力データには最小サイズが必要です。最小しきい値は 128 要素です。
生成された CUDA コード
CUDA コードを生成すると、GPU Coder は cuSOLVER ライブラリを初期化する関数呼び出しを作成し、mldivide
演算を実行して、cuSOLVER ライブラリで使用されたハードウェア リソースを解放します。生成された CUDA コードのスニペットは次のとおりです。
cusolverEnsureInitialization(); /* Copyright 2017 The MathWorks, Inc. */ cudaMemcpy(b_gpu_A, A, 1152UL, cudaMemcpyHostToDevice); blackslash_kernel1<<<dim3(1U, 1U, 1U), dim3(160U, 1U, 1U)>>>(b_gpu_A,gpu_A); cudaMemcpy(b_A, gpu_A, 1152UL, cudaMemcpyDeviceToHost); cusolverDnDgetrf_bufferSize(cusolverGlobalHandle, 12, 12, &gpu_A[0], 12, &cusolverWorkspaceReq); cusolverWorkspaceTypeSize = 8; cusolverInitWorkspace(); cudaMemcpy(gpu_A, b_A, 1152UL, cudaMemcpyHostToDevice); cusolverDnDgetrf(cusolverGlobalHandle, 12, 12, &gpu_A[0], 12, (real_T *) cusolverWorkspaceBuff, &gpu_ipiv_t[0], gpu_info_t); A_dirtyOnGpu = true; cudaMemcpy(&info_t, gpu_info_t, 4UL, cudaMemcpyDeviceToHost);
cuSOLVER ライブラリを初期化し、cuSOLVER ライブラリ コンテキストのハンドルを作成するために、関数 cusolversEnsureInitialization()
で cusolverDnCreate()
cuSOLVER API を呼び出します。これにより、ホストとデバイスのハードウェア リソースが割り当てられます。
static void cusolverEnsureInitialization(void) { if (cusolverGlobalHandle == NULL) { cusolverDnCreate(&cuSolverGlobalHandle); } }
backslash_kernel1
は行列 A
をゼロ パディングします。このカーネルが起動し、512 スレッドから成る 1 つのブロックが用意されます。
static __global__ __launch_bounds__(160, 1) void backslash_kernel1(const real_T * A, real_T *b_A) { int32_T threadId; ; ; threadId = (int32_T)(((gridDim.x * gridDim.y * blockIdx.z + gridDim.x * blockIdx.y) + blockIdx.x) * (blockDim.x * blockDim.y * blockDim.z) + (int32_T)((threadIdx.z * blockDim.x * blockDim.y + threadIdx.y * blockDim.x) + threadIdx.x)); if (!(threadId >= 144)) { /* Copyright 2017 The MathWorks, Inc. */ b_A[threadId] = A[threadId]; } }
cudaMemcpy
の呼び出しは、行列 A
をホストからデバイスに転送します。関数 cusolverDnDgetrf
は m 行 n 列の行列の LU 分解を計算します。
P*A = L*U
ここで、A は m 行 n 列の行列、P は置換行列、L は単位対角要素を持つ下三角行列、U は上三角行列です。
cuSOLVER スタンドアロン コード
cuSOLVER の部分的なサポートしかない qr
などの関数の場合、GPU Coder は必要に応じて LAPACK ライブラリを使用します。MEX 関数の場合、コード ジェネレーターは MATLAB に含まれている LAPACK ライブラリを使用します。スタンドアロン コードの場合、コード ジェネレーターは指定された LAPACK ライブラリを使用します。LAPACK ライブラリを指定するには、以下を行います。
コマンド ラインで、LAPACK ライブラリ情報を含む独自の
coder.LAPACKCallback
クラスを定義し、それをコード構成オブジェクトのCustomLAPACKCallback
プロパティに割り当てます。GPU Coder アプリで、[カスタム LAPACK ライブラリのコールバック] パラメーターを LAPACK ライブラリに設定します。
たとえば、スタンドアロン実行可能ファイルを生成するには、次のコード生成スクリプトを使用できます。ここで、myLAPACK
は LAPACK ライブラリ情報を含むカスタム coder.LAPACKCallback
クラスの名前です。
cfg = coder.gpuConfig('exe'); cfg.CustomLAPACKCallback = 'myLAPACK'; cfg.GenerateExampleMain = 'GenerateCodeAndCompile'; classdef myLAPACK < coder.LAPACKCallback methods (Static) function hn = getHeaderFilename() hn = 'lapacke.h'; end function updateBuildInfo(buildInfo, buildctx) [~,linkLibExt] = buildctx.getStdLibInfo(); cudaPath = getenv('CUDA_PATH'); libPath = 'lib\x64'; buildInfo.addIncludePaths(fullfile(cudaPath,'include')); libName = 'cusolver'; libPath = fullfile(cudaPath,libPath); buildInfo.addLinkObjects([libName linkLibExt], libPath, ... '', true, true); lapackLocation = 'C:\LAPACK\win64'; % specify path to LAPACK libraries includePath = fullfile(lapackLocation,'include'); buildInfo.addIncludePaths(includePath); libPath = fullfile(lapackLocation,'lib'); libName = 'mllapack'; buildInfo.addLinkObjects([libName linkLibExt], libPath, ... '', true, true); buildInfo.addDefines('HAVE_LAPACK_CONFIG_H'); buildInfo.addDefines('LAPACK_COMPLEX_STRUCTURE'); end end end