convert2semiannual
Description
Examples
Aggregate Timetable Data to Semiannual Periodicity
Apply separate aggregation methods to related variables in a timetable
while maintaining consistency between aggregated results when converting to a semiannual periodicity. You can use convert2semiannual
to aggregate both intra-daily data and aggregated quarterly data. These methods result in equivalent semiannual aggregates.
Load a timetable (DataTimeTable
) of simulated stock price data and corresponding logarithmic returns. The data stored in DataTimeTable
is recorded at various times throughout the day on New York Stock Exchange (NYSE) business days from January 1, 2018, to December 31, 2020. The timetable DataTimeTable
also includes NYSE business calendar awareness. If your timetable does not account for nonbusiness days (weekends, holidays, and market closures), add business calendar awareness by using addBusinessCalendar
first.
load("SimulatedStockSeries.mat","DataTimeTable"); head(DataTimeTable)
Time Price Log_Return ____________________ ______ __________ 01-Jan-2018 11:52:48 100 -0.025375 01-Jan-2018 13:23:13 101.14 0.011336 01-Jan-2018 14:45:09 101.5 0.0035531 01-Jan-2018 15:30:30 100.15 -0.01339 02-Jan-2018 10:43:37 99.72 -0.0043028 03-Jan-2018 10:02:21 100.11 0.0039033 03-Jan-2018 11:22:37 103.96 0.037737 03-Jan-2018 13:42:27 107.05 0.02929
Use convert2quarterly
to aggregate intra-daily prices and returns to a quarterly periodicity. To maintain consistency between prices and returns, for any given quarter, aggregate prices by reporting the last recorded price using "lastvalue"
and aggregate returns by summing all logarithmic returns using "sum"
.
DTTQuarterly1 = convert2quarterly(DataTimeTable,Aggregation=["lastvalue" "sum"])
DTTQuarterly1=12×2 timetable
Time Price Log_Return
___________ ______ __________
31-Mar-2018 110.74 0.07664
30-Jun-2018 99.29 -0.10914
30-Sep-2018 105.42 0.059908
31-Dec-2018 84.26 -0.22405
31-Mar-2019 112.93 0.29286
30-Jun-2019 169.77 0.40768
30-Sep-2019 148.97 -0.1307
31-Dec-2019 153.22 0.02813
31-Mar-2020 229.88 0.40568
30-Jun-2020 224.29 -0.024618
30-Sep-2020 246.77 0.095517
31-Dec-2020 301.04 0.19879
Use convert2semiannual
to aggregate the data to a semiannual periodicity and compare the results of two different approaches. The first approach computes semiannual results by aggregating the quarterly aggregates and the second approach computes semiannual results by directly aggregating the original intra-daily data. Note that convert2semiannual
reports results on the last business day of June and December.
DTTSemi1 = convert2semiannual(DTTQuarterly1,Aggregation=["lastvalue" "sum"]) % Quarterly to semiannual
DTTSemi1=6×2 timetable
Time Price Log_Return
___________ ______ __________
30-Jun-2018 99.29 -0.032501
31-Dec-2018 84.26 -0.16414
30-Jun-2019 169.77 0.70054
31-Dec-2019 153.22 -0.10257
30-Jun-2020 224.29 0.38107
31-Dec-2020 301.04 0.2943
DTTSemi2 = convert2semiannual(DataTimeTable,Aggregation=["lastvalue" "sum"]) % Intra-daily to semiannual
DTTSemi2=6×2 timetable
Time Price Log_Return
___________ ______ __________
30-Jun-2018 99.29 -0.032501
31-Dec-2018 84.26 -0.16414
30-Jun-2019 169.77 0.70054
31-Dec-2019 153.22 -0.10257
30-Jun-2020 224.29 0.38107
31-Dec-2020 301.04 0.2943
The results of the two approaches are the same because each semiannual period contains exactly two calendar quarters.
Input Arguments
TT1
— Data to aggregate to semiannual periodicity
timetable
Data to aggregate to a semiannual periodicity, specified as a timetable.
Each variable can be a numeric vector (univariate series) or numeric matrix (multivariate series).
Note
NaN
s indicate missing values.Timestamps must be in ascending or descending order.
By default, all days are business days. If your timetable does not account for nonbusiness
days (weekends, holidays, and market closures), add business calendar awareness by using
addBusinessCalendar
first. For example, the following command adds business calendar logic to include only NYSE
business
days.
TT = addBusinessCalendar(TT);
Data Types: timetable
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Example: TT2 = convert2semiannual(TT1,'Aggregation',["lastvalue"
"sum"])
Aggregation
— Aggregation method for semiannual period to semiannual periodicity (inter-day aggregation)
"lastvalue"
(default) | "sum"
| "prod"
| "mean"
| "min"
| "max"
| "firstvalue"
| character vector | function handle | string vector | cell vector of character vectors or function handles
Aggregation method for TT1
defining how
data is aggregated over business days in a semiannual period to
semiannual periodicity (inter-day aggregation), specified as one
of the following methods, a string vector of methods, or a length
numVariables
cell vector of methods,
where numVariables
is the number of variables
in TT1
.
"sum"
— Sum the values in each year or day."mean"
— Calculate the mean of the values in each year or day."prod"
— Calculate the product of the values in each year or day."min"
— Calculate the minimum of the values in each year or day."max"
— Calculate the maximum of the values in each year or day."firstvalue"
— Use the first value in each year or day."lastvalue"
— Use the last value in each year or day.@customfcn
— A custom aggregation method that accepts a table variable and returns a numeric scalar (for univariate series) or row vector (for multivariate series). The function must accept empty inputs[]
.
If you specify a single method, convert2semiannual
applies the specified method to all time series in TT1
. If you specify a string vector or cell vector aggregation
, convert2semiannual
applies aggregation(
to j
)TT1(:,
; j
)convert2semiannual
applies each aggregation method one at a time (for more details, see retime
). For example, consider a daily timetable
representing TT1
with three
variables.
Time AAA BBB CCC ___________ ______ ______ _________________ 01-Jan-2018 100.00 200.00 300.00 400.00 02-Jan-2018 100.02 200.04 300.06 400.08 03-Jan-2018 99.96 199.92 299.88 399.84 . . . . . . . . . . . . . . . 28-Jun-2018 69.63 139.26 208.89 278.52 29-Jun-2018 70.15 140.3 210.45 280.60 30-Jun-2018 75.77 151.54 227.31 303.08 01-Jul-2018 75.68 151.36 227.04 302.72 02-Jul-2018 71.34 142.68 214.02 285.36 03-Jul-2018 69.25 138.50 207.75 277.00 . . . . . . . . . . . . . . . 29-Dec-2018 249.16 498.32 747.48 996.64 30-Dec-2018 250.21 500.42 750.63 1000.84 31-Dec-2018 256.75 513.50 770.25 1027.00
TT2
(in which all days are business
days and the 'lastvalue'
is reported on the
last business day of each semiannual period) are as
follows.Time AAA BBB CCC ___________ ______ ______ ________________ 30-Jun-2018 75.77 151.54 227.31 303.08 31-Dec-2018 256.75 513.50 770.25 1027.00
All methods omit missing data (NaN
s) in direct aggregation calculations on each variable. However, for situations in which missing values appear in the first row of TT1
, missing values can also appear in the aggregated results TT2
. To address missing data, write and specify a custom aggregation method (function handle) that supports missing data.
Data Types: char
| string
| cell
| function_handle
Daily
— Intra-day aggregation method for TT1
"lastvalue"
(default) | "sum"
| "prod"
| "mean"
| "min"
| "max"
| "firstvalue"
| character vector | function handle | string vector | cell vector of character vectors or function handles
Intra-day aggregation method for TT1
, specified as an aggregation method, a
string vector of methods, or a length numVariables
cell vector of
methods. For more details on supported methods and behaviors, see the
'Aggregation'
name-value argument.
Data Types: char
| string
| cell
| function_handle
Output Arguments
TT2
— Semiannual data
timetable
Semiannual data, returned as a timetable.
convert2semiannual
reports semiannual aggregation
results on the last business day of June and December. The time arrangement of TT1
and TT2
are the same.
If a variable of TT1
has no business-day records
during an annual period within the sampling time span,
convert2semiannual
returns a NaN
for that variable and annual period in TT2
.
The first date in TT2
is the last business date of
the semiannual period in which the first date in
TT1
occurs, provided
TT1
has business dates in that semiannual
period. Otherwise the first date in TT2
is the next
end-of-semiannual-period business date.
The last date in TT2
is the last business date of
the semiannual period in which the last date in
TT1
occurs, provided
TT1
has business dates in that semiannual
period. Otherwise the last date in TT2
is the
previous end-of-semiannual-period business date.
Version History
Introduced in R2021a
MATLAB コマンド
次の MATLAB コマンドに対応するリンクがクリックされました。
コマンドを MATLAB コマンド ウィンドウに入力して実行してください。Web ブラウザーは MATLAB コマンドをサポートしていません。
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)