# simulate

Monte Carlo simulation of univariate regression model with ARIMA time series errors

## Syntax

## Description

uses additional options specified by one or more name-value arguments.
`Y`

= simulate(`Mdl`

,`numobs`

,`Name=Value`

)`simulate`

returns numeric arrays when all optional input data are
numeric arrays. For example, `simulate(Mdl,10,NumPaths=1000,X=Pred)`

simulates `1000`

sample paths of length `10`

from the
regression model with ARIMA errors `Mdl`

, and uses the predictor data in
`Pred`

for the model regression component.

returns the table or timetable `Tbl`

= simulate(`Mdl`

,`numobs`

,Presample=`Presample`

,PresampleInnovationVariable=`PresampleInnovationVariable`

)`Tbl`

containing a variable for each of
the random paths of response, error model innovation, and unconditional disturbance series
resulting from simulating the regression model with ARIMA errors `Mdl`

.
`simulate`

uses the error model variable
`PresampleInnovationVariable`

in the table or timetable of presample
data `Presample`

to initialize the model.* (since R2023b)*

To initialize the model using presample unconditional disturbance data, replace the
`PresampleInnovationVariable`

name-value argument with
`PresampleRegressionDisturbanceVariable`

name-value argument.

specifies the variables `Tbl`

= simulate(`Mdl`

,`numobs`

,InSample=`InSample`

,PredictorVariables=`PredictorVariables`

)`PredictorVariables`

in the in-sample table or
timetable of data `InSample`

containing the predictor data for the
model regression component.* (since R2023b)*

specifies presample error model innovation data to initialize the model and in-sample
predictor data for the model regression component.`Tbl`

= simulate(`Mdl`

,`numobs`

,Presample=`Presample`

,PresampleInnovationVariable=`PresampleInnovationVariable`

,InSample=`InSample`

,PredictorVariables=`PredictorVariables`

)* (since R2023b)*

uses additional options specified by one or more name-value arguments, using any input
argument combination in the previous three syntaxes.`Tbl`

= simulate(___,`Name=Value`

)* (since R2023b)*

For example,
`simulate(Mdl,100,NumPaths=1000,InSample=Tbl,PredictoreVariables="CPI")`

returns a timetable containing a variable for each of the response, error model
innovation, and unconditional disturbance series. Each variable is a 100-by-1000 matrix
representing 1000, 100-period paths simulated from the regression model with ARIMA errors.
`simulate`

applies the predictor data in the
`CPI`

variable of the timetable `Tbl`

to the model
regression component.

## Examples

### Simulate Response Path Vector From Regression Model with ARMA Errors

Create the following regression model with ARMA(2,1) errors:

$$\begin{array}{l}\begin{array}{c}{y}_{t}=1+{u}_{t}\\ {u}_{t}=0.5{u}_{t-1}-0.8{u}_{t-2}+{\epsilon}_{t}-0.5{\epsilon}_{t-1},\end{array}\end{array}$$

where $${\epsilon}_{t}$$ is Gaussian with variance 0.1.

```
Mdl = regARIMA(Intercept=1,AR={0.5 -0.8},MA=-0.5, ...
Variance=0.1);
```

`Mdl`

is a fully specified `regARIMA`

object.

Simulate a path of responses of length 100.

rng(1,"twister") % For reproducibility y = simulate(Mdl,100);

`y`

is a 100-by-1 vector containing the response path simulated from `Mdl`

.

Plot the simulated path.

plot(y)

### Simulate Matrix of Response Paths

Simulate 1000 paths of responses from the following regression model with ARMA(2,1) errors:

$$\begin{array}{l}\begin{array}{c}{y}_{t}={X}_{t}\left[\begin{array}{c}0.1\\ -0.2\end{array}\right]+{u}_{t}\\ {u}_{t}=0.5{u}_{t-1}-0.8{u}_{t-2}+{\epsilon}_{t}-0.5{\epsilon}_{t-1},\end{array}\end{array}$$

where $${\epsilon}_{t}$$ is Gaussian with variance 0.1. Assume the predictors are standard Gaussian random variables. Provide data as numeric arrays.

Create the regression model with ARIMA errors.

```
Mdl = regARIMA(Intercept=0,AR={0.5 -0.8},MA=-0.5, ...
Beta=[0.1; -0.2],Variance=0.1);
```

Simulate two series of predictor data for the regression component.

rng(1,"twister") % For reproducibility Pred = randn(100,2);

Simulate 1000 paths of responses each of length 100.

numobs = 100; numpaths = 1000; y = simulate(Mdl,100,X=Pred,NumPaths=1000);

`y`

is a 1000-by-100 matrix containing the independent response paths simulated from `Mdl`

.

Plot the simulated paths.

plot(y)

### Simulate Responses, Innovations, and Unconditional Disturbances

Simulate paths of responses, innovations, and unconditional disturbances from a regression model with SARIMA${\left(2,1,1\right)}_{12}$ errors.

Specify the model:

$$\begin{array}{c}{y}_{t}=X\left[\begin{array}{c}1.5\\ -2\end{array}\right]+{u}_{t}\\ \left(1-0.2L-0.1{L}^{2}\right)\left(1-L\right)\left(1-0.01{L}^{12}\right)\left(1-{L}^{12}\right){u}_{t}=\left(1+0.5L\right)\left(1+0.02{L}^{12}\right){\epsilon}_{t},\end{array}$$

where $${\epsilon}_{t}$$ follows a t-distribution with 15 degrees of freedom.

dstr = struct("Name","t","DoF",15); Mdl = regARIMA(AR={0.2 0.1},MA=0.5,SAR=0.01,SARLags=12, ... SMA=0.02,SMALags=12,D=1,Seasonality=12,Beta=[1.5; -2], ... Intercept=0,Variance=0.1,Distribution=dstr)

Mdl = regARIMA with properties: Description: "Regression with ARIMA(2,1,1) Error Model Seasonally Integrated with Seasonal AR(12) and MA(12) (t Distribution)" SeriesName: "Y" Distribution: Name = "t", DoF = 15 Intercept: 0 Beta: [1.5 -2] P: 27 D: 1 Q: 13 AR: {0.2 0.1} at lags [1 2] SAR: {0.01} at lag [12] MA: {0.5} at lag [1] SMA: {0.02} at lag [12] Seasonality: 12 Variance: 0.1

Simulate and plot 500 paths with 25 observations each.

T = 25; rng(1,"twister") % For reproducibility Pred = randn(T,2); [Y,E,U] = simulate(Mdl,T,NumPaths=500,X=Pred); figure tiledlayout(3,1) nexttile plot(Y) axis tight title("Simulated Response Paths") nexttile plot(E) axis tight title("Simulated Innovations Paths") nexttile plot(U) axis tight title("Simulated Unconditional Disturbances Paths")

Plot the 2.5th, 50th (median), and 97.5th percentiles of the simulated response paths.

lower = prctile(Y,2.5,2); middle = median(Y,2); upper = prctile(Y,97.5,2); figure plot(1:25,lower,"r:",1:25,middle,"k",1:25,upper,"r:") title("95% Percentile Confidence Interval for Response") legend("95% Interval","Median",Location="best")

Compute statistics across the second dimension (across paths) to summarize the sample paths.

Plot a histogram of the simulated paths at time 20.

```
figure
histogram(Y(20,:),10)
title("Response Distribution at Time 20")
```

### Forecast Model With Stationary Errors Using Monte Carlo Simulations

Fit a regression model with ARMA(1,1) errors by regressing the US consumer price index (CPI) quarterly changes onto the US gross domestic product (GDP) growth rate. Forecast log GDP using Monte Carlo simulation and the estimated model. Supply data in timetables.

**Load and Transform Data**

Load the US macroeconomic data set. Compute the series of GDP quarterly growth rates and CPI quarterly changes.

load Data_USEconModel DTT = price2ret(DataTimeTable,DataVariables="GDP"); DTT.GDPRate = 100*DTT.GDP; DTT.CPIDel = diff(DataTimeTable.CPIAUCSL); T = height(DTT)

T = 248

figure tiledlayout(2,1) nexttile plot(DTT.Time,DTT.GDPRate) title("GDP Rate") ylabel("Percent Growth") nexttile plot(DTT.Time,DTT.CPIDel) title("Index")

The series appear stationary, albeit heteroscedastic.

**Prepare Timetable for Estimation**

When you plan to supply a timetable, you must ensure it has all the following characteristics:

The selected response variable is numeric and does not contain any missing values.

The timestamps in the

`Time`

variable are regular, and they are ascending or descending.

Remove all missing values from the timetable.

DTT = rmmissing(DTT); T_DTT = height(DTT)

T_DTT = 248

Because each sample time has an observation for all variables, `rmmissing`

does not remove any observations.

Determine whether the sampling timestamps have a regular frequency and are sorted.

`areTimestampsRegular = isregular(DTT,"quarters")`

`areTimestampsRegular = `*logical*
0

areTimestampsSorted = issorted(DTT.Time)

`areTimestampsSorted = `*logical*
1

`areTimestampsRegular = 0`

indicates that the timestamps of `DTT`

are irregular. `areTimestampsSorted = 1`

indicates that the timestamps are sorted. Macroeconomic series in this example are timestamped at the end of the month. This quality induces an irregularly measured series.

Remedy the time irregularity by shifting all dates to the first day of the quarter.

dt = DTT.Time; dt = dateshift(dt,"start","quarter"); DTT.Time = dt; areTimestampsRegular = isregular(DTT,"quarters")

`areTimestampsRegular = `*logical*
1

`DTT`

is regular.

**Create Model Template for Estimation**

Suppose that a regression model of the quarterly GDP rate on CPI changes, with ARMA(1,1) errors, is appropriate.

Create a model template for a regression model with ARMA(1,1) errors template. Specify the response variable name.

```
Mdl = regARIMA(1,0,1);
Mdl.SeriesName = "GDPRate";
```

`Mdl`

is a partially specified `regARIMA`

object.

**Partition Data**

Reserve 2 years (8 quarters) of data at the end of the series to compare against the forecasts.

numobs = 8; estidx = 1:(T_DTT-numobs); % Estimation sample frstHzn = (T_DTT-numobs+1):T_DTT; % Forecast horizon

**Fit Model to Data**

Fit a regression model with ARMA(1,1) errors to the estimation sample. Specify the predictor variable name.

`EstMdl = estimate(Mdl,DTT(estidx,:),PredictorVariables="CPIDel");`

Regression with ARMA(1,1) Error Model (Gaussian Distribution): Value StandardError TStatistic PValue __________ _____________ __________ __________ Intercept 0.016489 0.0017307 9.5272 1.6152e-21 AR{1} 0.57835 0.096952 5.9653 2.4415e-09 MA{1} -0.15125 0.11658 -1.2974 0.19449 Beta(1) 0.0025095 0.0014147 1.7738 0.076089 Variance 0.00011319 7.5405e-06 15.01 6.2792e-51

`EstMdl`

is a fully specified, estimated `regARIMA`

object. By default, `estimate`

backcasts for the required `Mdl.P = 1`

presample regression model residual and sets the required `Mdl.Q = 1`

presample error model residual to 0.

**Forecast Estimated Model**

Infer estimation sample unconditional disturbances to initialize the model for forecasting. Specify the predictor variable name.

`Tbl0 = infer(EstMdl,DTT(estidx,:),PredictorVariables="CPIDel");`

Simulate 1000 paths with 8 observations each. Use the inferred unconditional disturbances as presample data. Specify the predictor and presample unconditional disturbance variable names.

rng(1,"twister"); % For reproducibility numpaths = 1000; TblSim = simulate(EstMdl,numobs,NumPaths=numpaths,Presample=Tbl0, ... PresampleRegressionDisturbanceVariable="GDPRate_RegressionResidual", ... InSample=DTT(frstHzn,:),PredictorVariables="CPIDel");

Plot the simulation median forecast and approximate 95% forecast intervals.

TblSim.FStats = quantile(TblSim.GDPRate_Response,[0.025 0.5 0.975],2); figure plot(DTT.Time(end-40:end),DTT.GDPRate(end-40:end),Color=[.7,.7,.7]) hold on h1 = plot(TblSim.Time,TblSim.FStats(:,[1 3]),"r:",LineWidth=2); h2 = plot(TblSim.Time,TblSim.FStats(:,2),"k",LineWidth=2); h = gca; ph = patch([repmat(TblSim.Time(1),1,2) repmat(TblSim.Time(end),1,2)], ... [h.YLim fliplr(h.YLim)], ... [0 0 0 0],"b"); ph.FaceAlpha = 0.1; legend([h1(1) h2],["95% percentile intervals" "Sim. median"],Location="northwest", ... AutoUpdate="off") axis tight title("GDP Rate Forecast Over 2-year Horizon") hold off

### Forecast Model with Nonstationary Errors Using Monte Carlo Simulation

Fit a regression model with ARIMA(1,1,1) errors by regressing the quarterly log US GDP onto the log CPI. Forecast log GDP using Monte Carlo simulation and the estimated model. Supply data in timetables.

Load the US macroeconomic data set. Compute the log GDP series.

```
load Data_USEconModel
DTT = DataTimeTable;
DTT.LogGDP = log(DTT.GDP);
T = height(DTT);
```

Remedy the time irregularity by shifting all dates to the first day of the quarter.

dt = DTT.Time; dt = dateshift(dt,"start","quarter"); DTT.Time = dt;

Reserve 2 years (8 quarters) of data at the end of the series to compare against the forecasts.

numobs = 8; estidx = 1:(T-numobs); % Estimation sample frstHzn = (T-numobs+1):T; % Forecast horizon

Suppose that a regression model of the quarterly log GDP on CPI, with ARMA(1,1) errors, is appropriate.

Create a model template for a regression model with ARMA(1,1) errors template. Specify the response variable name.

```
Mdl = regARIMA(1,1,1);
Mdl.SeriesName = "LogGDP";
```

The intercept is not identifiable in a regression model with integrated errors. Fix its value before estimation. One way to do this is to estimate the intercept using simple linear regression. Use the estimation sample.

coeff = [ones(T-numobs,1) DTT.CPIAUCSL(estidx)]\DTT.LogGDP(estidx); Mdl.Intercept = coeff(1);

Fit a regression model with ARMA(1,1,1) errors to the estimation sample. Specify the predictor variable name.

`EstMdl = estimate(Mdl,DTT(estidx,:),PredictorVariables="CPIAUCSL");`

Regression with ARIMA(1,1,1) Error Model (Gaussian Distribution): Value StandardError TStatistic PValue __________ _____________ __________ ___________ Intercept 5.8303 0 Inf 0 AR{1} 0.92869 0.028414 32.684 2.6126e-234 MA{1} -0.39063 0.057599 -6.7819 1.1858e-11 Beta(1) 0.0029335 0.0014645 2.0031 0.045166 Variance 0.00010668 6.9256e-06 15.403 1.554e-53

`EstMdl`

is a fully specified, estimated `regARIMA`

object. By default, `estimate`

backcasts for the required `Mdl.P = 2`

presample regression model residual and sets the required `Mdl.Q = 1`

presample error model residual to 0.

Infer estimation sample unconditional disturbances to initialize the model for forecasting. Specify the predictor variable name.

`Tbl0 = infer(EstMdl,DTT(estidx,:),PredictorVariables="CPIAUCSL");`

Simulate 1000 paths with 8 observations each. Use the inferred unconditional disturbances as presample data. Specify the predictor and presample unconditional disturbance variable names.

rng(1,"twister"); % For reproducibility numpaths = 1000; TblSim = simulate(EstMdl,numobs,NumPaths=numpaths,Presample=Tbl0, ... PresampleRegressionDisturbanceVariable="LogGDP_RegressionResidual", ... InSample=DTT(frstHzn,:),PredictorVariables="CPIAUCSL");

Plot the simulation median forecast and approximate 95% forecast intervals.

TblSim.FStats = quantile(TblSim.LogGDP_Response,[0.025 0.5 0.975],2); figure plot(DTT.Time(end-40:end),DTT.LogGDP(end-40:end),Color=[.7,.7,.7]) hold on h1 = plot(TblSim.Time,TblSim.FStats(:,[1 3]),"r:",LineWidth=2); h2 = plot(TblSim.Time,TblSim.FStats(:,2),"k",LineWidth=2); h = gca; ph = patch([repmat(TblSim.Time(1),1,2) repmat(TblSim.Time(end),1,2)], ... [h.YLim fliplr(h.YLim)],[0 0 0 0],"b"); ph.FaceAlpha = 0.1; legend([h1(1) h2],["95% percentile intervals" "Sim. median"],Location="northwest", ... AutoUpdate="off") axis tight title("Log GDP Forecast Over 2-year Horizon") hold off

## Input Arguments

`numobs`

— Number of random observations to generate

positive integer

Sample path length, specified as a positive integer. `numobs`

is
the number of random observations to generate per output path.

**Data Types: **`double`

`Presample`

— Presample data

table | timetable

*Since R2023b*

Presample data containing paths of responses error model innovations
*ε _{t}* or unconditional disturbances

*u*to initialize the model, specified as a table or timetable with

_{t}`numprevars`

variables and
`numpreobs`

rows.`simulate`

returns the simulated variables in the output table
or timetable `Tbl`

, which is the same type as
`Presample`

. If `Presample`

is a timetable,
`Tbl`

is a timetable that immediately follows
`Presample`

in time with respect to the sampling frequency.

Each selected variable is a single path (`numpreobs`

-by-1 vector)
or multiple paths (`numpreobs`

-by-`numprepaths`

matrix) of `numpreobs`

observations representing the presample of
`numpreobs`

observations of error model innovations or unconditional
disturbances.

Each row is a presample observation, and measurements in each row occur
simultaneously. The last row contains the latest presample observation.
`numpreobs`

must be one of the following values:

At least

`Mdl.P`

when`Presample`

provides only presample unconditional disturbancesAt least

`Mdl.Q`

when`Presample`

provides only presample error model innovationsAt least

`max([Mdl.P Mdl.Q])`

otherwise

If `numpreobs`

exceeds the minimum number,
`simulate`

uses the latest required number of observations
only.

If `numprepaths`

> `NumPaths`

,
`simulate`

uses only the first `NumPaths`

columns.

If `Presample`

is a timetable, all the following conditions must
be true:

If `Presample`

is a table, the last row contains the latest
presample observation.

By default, `simulate`

sets necessary presample error model
innovations and unconditional disturbances to zero.

If you specify the `Presample`

, you must specify the presample
error model innovation or unconditional disturbance variable name by using the
`PresampleInnovationVariable`

or
`PresampleRegressionDisturbanceVariable`

name-value
argument.

`PresampleInnovationVariable`

— Error model innovation *ε*_{t} to select from `Presample`

string scalar | character vector | integer | logical vector

_{t}

*Since R2023b*

Error model innovation *ε _{t}* to select from

`Presample`

containing the presample error model innovation data,
specified as one of the following data types:String scalar or character vector containing the variable name to select from

`Presample.Properties.VariableNames`

Variable index (positive integer) to select from

`Presample.Properties.VariableNames`

A logical vector, where

`PresampleInnovationVariable(`

selects variable) = true`j`

from`j`

`Presample.Properties.VariableNames`

The selected variable must be a numeric vector and cannot contain missing values
(`NaN`

s).

If you specify presample error model innovation data by using the
`Presample`

name-value argument, you must specify
`PresampleInnovationVariable`

.

**Example: **`PresampleInnovationVariable="GDP_E"`

**Example: **`PresampleInnovationVariable=[false false true false]`

or
`PresampleInnovationVariable=3`

selects the third table variable for
presample error model innovation data.

**Data Types: **`double`

| `logical`

| `char`

| `cell`

| `string`

`InSample`

— In-sample predictor data

table | timetable

*Since R2023b*

In-sample predictor data for the model regression component, specified as a table or
timetable. `InSample`

contains `numvars`

variables,
including `numpreds`

predictor variables
*x _{t}*.

`simulate`

returns the simulated variables in the output table
or timetable `Tbl`

, which is commensurate with
`InSample`

.

Each row corresponds to an observation in the simulation horizon, the first row is
the earliest observation, and measurements in each row, among all paths, occur
simultaneously. `InSample`

must have at least
`numobs`

rows to cover the simulation horizon. If you supply more
rows than necessary, `simulate`

uses only the first
`numobs`

rows.

Each selected predictor variable is a numeric vector without missing values
(`NaN`

s). All predictor variables are present in the regression
component of each response equation and apply to all response paths.

If `InSample`

is a timetable, the following conditions apply:

If `InSample`

is a table, the last row contains the latest
observation.

By default, `simulate`

does not include the regression
component in the model, regardless of the value of `Mdl.Beta`

.

`PredictorVariables`

— Predictor variables *x*_{t} to select from `InSample`

string vector | cell vector of character vectors | vector of integers | logical vector

_{t}

Predictor variables *x _{t}* to select from

`InSample`

containing predictor data for the regression component,
specified as one of the following data types:String vector or cell vector of character vectors containing

`numpreds`

variable names in`InSample.Properties.VariableNames`

A vector of unique indices (positive integers) of variables to select from

`InSample.Properties.VariableNames`

A logical vector, where

`PredictorVariables(`

selects variable) = true`j`

from`j`

`InSample.Properties.VariableNames`

The selected variables must be numeric vectors and cannot contain missing values
(`NaN`

s).

By default, `simulate`

excludes the regression component,
regardless of its presence in `Mdl`

.

**Example: **```
PredictorVariables=["M1SL" "TB3MS"
"UNRATE"]
```

**Example: **`PredictorVariables=[true false true false]`

or
`PredictorVariable=[1 3]`

selects the first and third table variables
to supply the predictor data.

**Data Types: **`double`

| `logical`

| `char`

| `cell`

| `string`

### Name-Value Arguments

Specify optional pairs of arguments as
`Name1=Value1,...,NameN=ValueN`

, where `Name`

is
the argument name and `Value`

is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.

*
Before R2021a, use commas to separate each name and value, and enclose*
`Name`

*in quotes.*

**Example: **
`simulate(Mdl,100,NumPaths=1000,InSample=Tbl,PredictoreVariables="CPI")`

returns a timetable containing a variable for each of the response, error model innovation,
and unconditional disturbance series. Each variable is a 100-by-1000 matrix representing
1000, 100-period paths simulated from the regression model with ARIMA errors.
`simulate`

applies the predictor data in the `CPI`

variable of the timetable `Tbl`

to the model regression
component.

`NumPaths`

— Number of independent sample paths to generate

`1`

(default) | positive integer

Number of independent sample paths to generate, specified as a positive integer.

**Example: **`NumPaths=1000`

**Data Types: **`double`

`X`

— Predictor data

numeric matrix

Predictor data for the model regression component, specified as a numeric matrix
containing `numpreds`

columns. `numpreds`

is the
number of predictor variables (`numel(Mdl.Beta)`

). Use
`X`

only when you supply optional data inputs as numeric
arrays.

Each row of `X`

corresponds to a period in the length
`numobs`

simulation sample (period for which
`simulate`

simulates observations; the period after the
presample). `X`

must have at least `numobs`

rows.
The last row contains the latest predictor data. If `X`

has more than
`numobs`

rows, `simulate`

uses only the
latest `numobs`

rows.

`simulate`

does not use the regression component in the
presample period.

Each column is an individual predictor variable.

`simulate`

applies `X`

to each path; that
is, `X`

represents one path of observed predictors.

By default, `simulate`

excludes the regression component,
regardless of its presence in `Mdl`

.

**Data Types: **`double`

`E0`

— Presample error model innovations *ε*_{t}

`0`

(default) | numeric column vector | numeric matrix

_{t}

Presample error model innovations *ε _{t}*
used to initialize the moving average (MA) component of the error model, specified as
a

`numpreobs`

-by-1 numeric column vector or a
`numpreobs`

-by-`numprepaths`

matrix. Use
`E0`

only when you supply optional data inputs as numeric
arrays.`numpreobs`

is the number of presample observations.
`numprepaths`

is the number of presample response paths.

Each row is a presample observation (sampling time), and measurements in each row
occur simultaneously. The last row contains the latest presample observation.
`numpreobs`

must be at least `Mdl.Q`

to initialize
the MA component. If `numpreobs`

is larger than required,
`simulate`

uses the latest required number of observations
only.

Columns of `E0`

are separate, independent presample paths. The
following conditions apply:

If

`E0`

is a column vector, it represents a single residual path.`simulate`

applies it to each output path.If

`E0`

is a matrix,`simulate`

applies`E0(:,`

to initialize simulating path)`j`

.`j`

`E0`

must have at least`NumPaths`

columns;`simulate`

uses only the first`NumPaths`

columns of`E0`

.

**Data Types: **`double`

`U0`

— Presample unconditional disturbances *u*_{t}

`0`

(default) | numeric column vector | numeric matrix

_{t}

Presample unconditional disturbances *u _{t}*
used to initialize the autoregressive (AR) component of the error model, specified as
a

`numpreobs`

-by-1 numeric column vector or a
`numpreobs`

-by-`numprepaths`

matrix. Use
`U0`

only when you supply optional data inputs as numeric
arrays.Each row is a presample observation (sampling time), and measurements in each row
occur simultaneously. The last row contains the latest presample observation.
`numpreobs`

must be at least `Mdl.P`

to initialize
the AR component. If `numpreobs`

is larger than required,
`simulate`

uses the latest required number of observations
only.

Columns of `U0`

are separate, independent presample paths. The
following conditions apply:

If

`U0`

is a column vector, it represents a single residual path.`simulate`

applies it to each output path.If

`U0`

is a matrix,`simulate`

applies`U0(:,`

to initialize simulating path)`j`

.`j`

`U0`

must have at least`NumPaths`

columns;`simulate`

uses only the first`NumPaths`

columns of`U0`

.

**Data Types: **`double`

`PresampleRegressionDistrubanceVariable`

— Unconditional disturbance variable *u*_{t} to select from `Presample`

string scalar | character vector | integer | logical vector

_{t}

*Since R2023b*

Unconditional disturbance variable *u _{t}* to
select from

`Presample`

containing data for the presample
unconditional disturbances, specified as one of the following data types:String scalar or character vector containing a variable name in

`Presample.Properties.VariableNames`

Variable index (positive integer) to select from

`Presample.Properties.VariableNames`

A logical vector, where

`PresampleRegressionDistrubanceVariable(`

selects variable) = true`j`

from`j`

`Presample.Properties.VariableNames`

The selected variable must be a numeric vector and cannot contain missing values
(`NaN`

s).

If you specify presample unconditional disturbance data by using the
`Presample`

name-value argument, you must specify
`PresampleRegressionDistrubanceVariable`

.

**Example: **`PresampleRegressionDistrubanceVariable="StockRateU"`

**Example: **```
PresampleRegressionDistrubanceVariable=[false false true
false]
```

or `PresampleRegressionDistrubanceVariable=3`

selects the third table variable as the presample unconditional disturbance
data.

**Data Types: **`double`

| `logical`

| `char`

| `cell`

| `string`

**Note**

`NaN`

values in`X`

,`E0`

, and`U0`

indicate missing values.`simulate`

removes missing values from specified data by list-wise deletion.For the presample,

`simulate`

horizontally concatenates the possibly jagged arrays`E0`

and`U0`

with respect to the last rows, and then it removes any row of the concatenated matrix containing at least one`NaN`

.For in-sample data,

`simulate`

removes any row of`X`

containing at least one`NaN`

.

This type of data reduction reduces the effective sample size and can create an irregular time series.

For numeric data inputs,

`simulate`

assumes that you synchronize the presample data such that the latest observations occur simultaneously.`simulate`

issues an error when any table or timetable input contains missing values.

## Output Arguments

`Y`

— Simulated response paths *y*_{t}

numeric column vector | numeric matrix

_{t}

Simulated response paths *y _{t}*, returned as a

`numobs`

-by-1 numeric column vector or a `numobs`

-by-`NumPaths`

numeric matrix. `simulate`

returns `Y`

by default and when you supply optional data in numeric arrays.`Y`

represents the continuation of the presample responses in `Y0`

.

Each row corresponds to a period in the simulated series; the simulated series has the periodicity of `Mdl`

. Each column is a separate simulated path.

`E`

— Simulated error model innovation paths
*ε*_{t}

numeric column vector | numeric matrix

_{t}

Simulated error model innovations paths
*ε _{t}*, returned as a

`numobs`

-by-1 numeric column vector or a
`numobs`

-by-`NumPaths`

numeric matrix. Each
column (path) of `E`

has a mean of zero.
`simulate`

returns `E`

by default and when
you supply optional data in numeric arraysThe dimensions of `E`

correspond to the dimensions of
`Y`

.

`Tbl`

— Simulated response *y*_{t}, error model innovation *ε*_{t}, and unconditional disturbance
*u*_{t} paths

table | timetable

_{t}

_{t}

_{t}

*Since R2023b*

Simulated response *y _{t}*, error model
innovation

*ε*, and unconditional disturbance

_{t}*u*paths, returned as a table or timetable, the same data type as

_{t}`Presample`

or
`InSample`

. `simulate`

returns
`Tbl`

only when you supply at least one of the inputs
`Presample`

and `InSample`

.`Tbl`

contains the following variables:

The simulated response paths, which are in a

`numobs`

-by-`NumPaths`

numeric matrix, with rows representing observations and columns representing independent paths. Each path represents the continuation of the presample in`Presample`

, or each path corresponds, in time, with the rows of`InSample`

.`simulate`

names the simulated response variable in`Tbl`

, where_Response`responseName`

is`responseName`

`Mdl.SeriesName`

. For example, if`Mdl.SeriesName`

is`GDP`

,`Tbl`

contains a variable for the corresponding simulated response paths with the name`GDP_Response`

.The simulated error model innovation paths, which are in a

`numobs`

-by-`NumPaths`

numeric matrix, with rows representing observations and columns representing independent paths. Each path has a mean of zero, and represents the continuation of the corresponding presample path in`Presample`

, or each path corresponds, in time, with the rows of`InSample`

.`simulate`

names the simulated error model innovation variable in`Tbl`

, where_ErrorInnovation`responseName`

is`responseName`

`Mdl.SeriesName`

. For example, if`Mdl.SeriesName`

is`GDP`

,`Tbl`

contains a variable for the corresponding simulated error model innovation paths with the name`GDP_ErrorInnovation`

.The simulated unconditional disturbance paths, which are in a

`numobs`

-by-`NumPaths`

numeric matrix, with rows representing observations and columns representing independent paths. Each path represents the continuation of the corresponding presample path in`Presample`

, or each path corresponds, in time, with the rows of`InSample`

.`simulate`

names the simulated unconditional disturbance variable in`Tbl`

, where_RegressionInnovation`responseName`

is`responseName`

`Mdl.SeriesName`

. For example, if`Mdl.SeriesName`

is`GDP`

,`Tbl`

contains a variable for the corresponding simulated unconditional disturbance paths with the name`GDP_RegressionInnovation`

.When you supply

`InSample`

,`Tbl`

contains all variables in`InSample`

.

If `Tbl`

is a timetable, the following conditions hold:

The row order of

`Tbl`

, either ascending or descending, matches the row order of`Preample`

.If you specify

`InSample`

, row times`Tbl.Time`

are`InSample.Time(1:numobs)`

. Otherwise,`Tbl.Time(1)`

is the next time after`Presample(end)`

relative to the sampling frequency, and`Tbl.Time(2:numobs)`

are the following times relative to the sampling frequency.

## References

[1] Box, George E. P., Gwilym M. Jenkins, and Gregory C. Reinsel. *Time Series Analysis: Forecasting and Control*. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

[2] Davidson, R., and J. G. MacKinnon. *Econometric Theory and Methods*. Oxford, UK: Oxford University Press, 2004.

[3] Enders, Walter. *Applied Econometric Time Series*. Hoboken, NJ: John Wiley & Sons, Inc., 1995.

[4] Hamilton, James D. *Time Series Analysis*. Princeton, NJ: Princeton University Press, 1994.

[5] Pankratz, A. *Forecasting with Dynamic Regression
Models.* John Wiley & Sons, Inc., 1991.

[6] Tsay, R. S. *Analysis of Financial Time Series*.
2nd ed. Hoboken, NJ: John Wiley & Sons, Inc., 2005.

## Version History

**Introduced in R2013b**

### R2023a: `simulate`

accepts input data in tables and timetables, and returns results in tables and timetables

In addition to accepting presample and in-sample predictor data in numeric arrays,
`simulate`

accepts input data in tables or regular timetables. When
you supply input data in a table or timetable, the following conditions apply:

If you specify optional presample error model innovation or unconditional disturbance data to initialize the model, you must also specify corresponding variable names containing the data to use.

If you specify optional in-sample predictor data for the model regression component, you must also specify corresponding predictor variable names containing the data to use.

`simulate`

returns results in a table or timetable.

Name-value arguments to support tabular workflows include:

`InSample`

specifies the table or regular timetable of predictor data for the model regression component.`PredictorVariables`

specifies the names of the predictor series to select from`InSample`

for the model regression component.`Presample`

specifies the input table or timetable of presample regression innovation or error model innovation data.`PresampleInnovationVariable`

specifies the name of the error model innovation series to select from`Presample`

.`PresampleRegressionDisturbanceVariable`

specifies the name of the unconditional disturbance series to select from`Presample`

.

## See Also

### Objects

### Functions

### Topics

- Alternative ARIMA Model Representations
- Simulate Stationary Processes
- Simulate Trend-Stationary and Difference-Stationary Processes
- Monte Carlo Simulation of Conditional Mean Models
- Presample Data for Conditional Mean Model Simulation
- Transient Effects in Conditional Mean Model Simulations
- Monte Carlo Forecasting of Conditional Mean Models

## MATLAB コマンド

次の MATLAB コマンドに対応するリンクがクリックされました。

コマンドを MATLAB コマンド ウィンドウに入力して実行してください。Web ブラウザーは MATLAB コマンドをサポートしていません。

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

You can also select a web site from the following list:

## How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

### Americas

- América Latina (Español)
- Canada (English)
- United States (English)

### Europe

- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)

- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)