このページの内容は最新ではありません。最新版の英語を参照するには、ここをクリックします。
softmaxLayer
ソフトマックス層
説明
ソフトマックス層は、入力にソフトマックス関数を適用します。
作成
プロパティ
NumInputs
— 入力の数
1
(既定値)
この プロパティ は読み取り専用です。
層への入力の数。1
として返されます。この層は単一の入力のみを受け入れます。
データ型: double
InputNames
— 入力名
{'in'}
(既定値)
この プロパティ は読み取り専用です。
入力名。{'in'}
として返されます。この層は単一の入力のみを受け入れます。
データ型: cell
NumOutputs
— 出力の数
1
(既定値)
この プロパティ は読み取り専用です。
層からの出力の数。1
として返されます。この層には単一の出力のみがあります。
データ型: double
OutputNames
— 出力名
{'out'}
(既定値)
この プロパティ は読み取り専用です。
出力名。{'out'}
として返されます。この層には単一の出力のみがあります。
データ型: cell
例
ソフトマックス層の作成
'sm1'
という名前のソフトマックス層を作成します。
layer = softmaxLayer('Name','sm1')
layer = SoftmaxLayer with properties: Name: 'sm1'
Layer
配列にソフトマックス層を含めます。
layers = [ ... imageInputLayer([28 28 1]) convolution2dLayer(5,20) reluLayer maxPooling2dLayer(2,'Stride',2) fullyConnectedLayer(10) softmaxLayer classificationLayer]
layers = 7x1 Layer array with layers: 1 '' Image Input 28x28x1 images with 'zerocenter' normalization 2 '' 2-D Convolution 20 5x5 convolutions with stride [1 1] and padding [0 0 0 0] 3 '' ReLU ReLU 4 '' 2-D Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0] 5 '' Fully Connected 10 fully connected layer 6 '' Softmax softmax 7 '' Classification Output crossentropyex
アルゴリズム
ソフトマックス層
ソフトマックス層は、入力にソフトマックス関数を適用します。
分類問題の場合、ソフトマックス層とその後の分類層は、通常、最後の全結合層の後に配置します。
出力ユニットの活性化関数は次のソフトマックス関数です。
ここで、 および です。
ソフトマックス関数は、マルチクラス分類問題の場合、最後の全結合層の後の出力ユニットの活性化関数です。
ここで、 および です。また、 です。 はクラス r である場合のサンプルの条件付き確率で、 はクラスの事前確率です。
ソフトマックス関数は、"正規化指数関数" とも呼ばれ、ロジスティック シグモイド関数のマルチクラスへの汎化と見なすことができます [1]。
層の入力形式と出力形式
層配列内または層グラフ内の層は、形式を整えた dlarray
オブジェクトとして後続の層にデータを渡します。dlarray
オブジェクトの形式は文字列で、各文字はデータ内の対応する次元を表します。この形式には次の文字が 1 つ以上含まれています。
"S"
— 空間"C"
— チャネル"B"
— バッチ"T"
— 時間"U"
— 指定なし
たとえば、4 次元配列として表された 2 次元イメージ データがあり、最初の 2 つの次元がイメージの空間次元に対応し、3 番目の次元がイメージのチャネルに対応し、4 番目の次元がバッチ次元に対応している場合、このイメージ データは "SSCB"
(空間、空間、チャネル、バッチ) という形式で表されます。
functionLayer
オブジェクトを使用するか、関数 forward
と関数 predict
を dlnetwork
オブジェクトと共に使用して、カスタム層の開発などの自動微分ワークフローで、これらの dlarray
オブジェクトを操作できます。
次の表は、SoftmaxLayer
オブジェクトでサポートされている入力形式、および対応する出力形式を示しています。ソフトウェアが nnet.layer.Formattable
クラスを継承していないカスタム層、または Formattable
プロパティが 0
(false
) に設定された FunctionLayer
オブジェクトに層の出力を渡す場合、その層は形式を整えていない dlarray
オブジェクトを受け取り、この表に示された形式に従って次元が並べられます。ここには一部の形式のみを示します。層では、追加の "S"
(空間) 次元または "U"
(未指定) 次元をもつ形式など、追加の形式がサポートされている場合があります。
入力形式 | 出力形式 |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dlnetwork
オブジェクトでは、SoftmaxLayer
オブジェクトもこれらの入力形式と出力形式の組み合わせをサポートします。
入力形式 | 出力形式 |
---|---|
|
|
|
|
|
|
|
|
参照
[1] Bishop, C. M. Pattern Recognition and Machine Learning. Springer, New York, NY, 2006.
拡張機能
C/C++ コード生成
MATLAB® Coder™ を使用して C および C++ コードを生成します。
GPU コード生成
GPU Coder™ を使用して NVIDIA® GPU のための CUDA® コードを生成します。
バージョン履歴
R2016a で導入
MATLAB コマンド
次の MATLAB コマンドに対応するリンクがクリックされました。
コマンドを MATLAB コマンド ウィンドウに入力して実行してください。Web ブラウザーは MATLAB コマンドをサポートしていません。
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)