Main Content

このページの内容は最新ではありません。最新版の英語を参照するには、ここをクリックします。

averagePooling2dLayer

説明

2 次元平均プーリング層は、入力を矩形のプーリング領域に分割し、各領域の平均を計算することによって、ダウンサンプリングを実行します。

作成

説明

layer = averagePooling2dLayer(poolSize) は、平均プーリング層を作成し、PoolSize プロパティを設定します。

layer = averagePooling2dLayer(poolSize,Name,Value) は、名前と値のペアを使用して、オプションの Stride プロパティおよび Name プロパティを設定します。入力パディングを指定するには、名前と値のペアの引数 'Padding' を使用します。たとえば、averagePooling2dLayer(2,'Stride',2) は、プール サイズが [2 2]、ストライドが [2 2] の平均プーリング層を作成します。複数の名前と値のペアを指定できます。各プロパティ名を一重引用符で囲みます。

入力引数

すべて展開する

名前と値の引数

コンマ区切りの名前と値のペアの引数を使用して、層の入力の端に沿って追加するゼロ パディングのサイズを指定するか、Stride プロパティおよび Name プロパティを設定します。名前を一重引用符で囲みます。

例: averagePooling2dLayer(2,'Stride',2) は、プール サイズが [2 2]、ストライドが [2 2] の平均プーリング層を作成します。

入力の端のパディング。'Padding' と、次の値のいずれかから成るコンマ区切りのペアとして指定します。

  • 'same' — ストライドが 1 である場合、出力サイズが入力サイズと同じになるように、学習時または予測時にサイズが計算されたパディングを追加します。ストライドが 1 より大きい場合、出力サイズは ceil(inputSize/stride) になります。ここで、inputSize は入力の高さまたは幅、stride は対応する次元のストライドです。可能な場合、上下および左右に同じ量のパディングが追加されます。垂直方向に追加しなければならないパディングの値が奇数の場合、余ったパディングは下に追加されます。水平方向に追加しなければならないパディングの値が奇数の場合、余ったパディングは右に追加されます。

  • 非負の整数 p — サイズ p のパディングを入力のすべての端に追加します。

  • 非負の整数のベクトル [a b] — サイズ a のパディングを入力の上下に追加し、サイズ b のパディングを左右に追加します。

  • 非負の整数のベクトル [t b l r] — サイズが tblr のパディングを、それぞれ入力の上、下、左、右に追加します。

例: 'Padding',1 は、入力の上下に 1 行のパディングを追加し、入力の左右に 1 列のパディングを追加します。

例: 'Padding','same' は、(ストライドが 1 の場合) 出力サイズが入力サイズと同じになるようにパディングを追加します。

プロパティ

すべて展開する

平均プーリング

プーリング領域の次元。2 つの正の整数のベクトル [h w] として指定します。h は高さ、w は幅です。層を作成する場合、PoolSize をスカラーとして指定して、両方の次元に同じ値を使用できます。

ストライドの次元 Stride がそれぞれのプーリングの次元より小さい場合、プーリング領域が重なります。

パディングの次元 PaddingSize は、プーリング領域の次元 PoolSize より小さくなければなりません。

例: [2 1] は、高さが 2、幅が 1 のプーリング領域を指定します。

入力を垂直方向および水平方向に走査するステップ サイズ。2 つの正の整数のベクトル [a b] として指定します。a は垂直方向のステップ サイズ、b は水平方向のステップ サイズです。層を作成する場合、Stride をスカラーとして指定して、両方の次元に同じ値を使用できます。

ストライドの次元 Stride がそれぞれのプーリングの次元より小さい場合、プーリング領域が重なります。

パディングの次元 PaddingSize は、プーリング領域の次元 PoolSize より小さくなければなりません。

例: [2 3] は、垂直方向のステップ サイズとして 2、水平方向のステップ サイズとして 3 を指定します。

入力の境界に適用するパディングのサイズ。4 つの非負の整数のベクトル [t b l r] として指定します。t は上に適用されるパディング、b は下に適用されるパディング、l は左に適用されるパディング、r は右に適用されるパディングです。

層の作成時に、名前と値のペアの引数 'Padding' を使用してパディングのサイズを指定します。

例: [1 1 2 2] は、入力の上下に 1 行のパディングを追加し、入力の左右に 2 列のパディングを追加します。

パディングのサイズを決定するメソッド。'manual' または 'same' として指定します。

PaddingMode の値は、層の作成時に指定した 'Padding' 値に基づいて自動的に設定されます。

  • 'Padding' オプションをスカラーまたは非負の整数のベクトルに設定した場合、PaddingMode'manual' に自動的に設定されます。

  • 'Padding' オプションを 'same' に設定した場合、PaddingMode'same' に自動的に設定されます。ストライドが 1 である場合、出力サイズが入力サイズと同じになるように、学習時にパディングのサイズが計算されます。ストライドが 1 より大きい場合、出力サイズは ceil(inputSize/stride) になります。ここで、inputSize は入力の高さまたは幅、stride は対応する次元のストライドです。可能な場合、上下および左右に同じ量のパディングが追加されます。垂直方向に追加しなければならないパディングの値が奇数の場合、余ったパディングは下に追加されます。水平方向に追加しなければならないパディングの値が奇数の場合、余ったパディングは右に追加されます。

入力のパディングに使用する値。0 または "mean" として指定します。

Padding オプションを使用して入力にパディングを追加する場合、適用されるパディングの値は次のいずれかになります。

  • 0 — 入力は Padding プロパティで指定した位置にゼロでパディングされます。パディングされた領域は、外周のプーリング領域の平均値の計算に含められます。

  • "mean" — 入力は、Padding オプションで指定した位置にプーリング領域の平均でパディングされます。パディングされた領域は、各プーリング領域の平均値の計算対象から事実上除外されます。

メモ

Padding プロパティは将来のリリースで削除される予定です。代わりに PaddingSize を使用してください。層の作成時に、名前と値のペアの引数 'Padding' を使用してパディングのサイズを指定します。

入力の境界に垂直方向および水平方向に適用するパディングのサイズ。2 つの非負の整数のベクトル [a b] として指定します。a は入力データの上下に適用されるパディング、b は左右に適用されるパディングです。

例: [1 1] は、入力の上下に 1 行のパディングを追加し、入力の左右に 1 列のパディングを追加します。

層の名前。文字ベクトルまたは string スカラーとして指定します。Layer 配列入力の場合、関数 trainnet および関数 dlnetwork は、名前が "" の層に自動的に名前を割り当てます。

AveragePooling2DLayer オブジェクトは、このプロパティを文字ベクトルとして格納します。

データ型: char | string

この プロパティ は読み取り専用です。

層への入力の数。1 として返されます。この層は単一の入力のみを受け入れます。

データ型: double

この プロパティ は読み取り専用です。

入力名。{'in'} として返されます。この層は単一の入力のみを受け入れます。

データ型: cell

この プロパティ は読み取り専用です。

層からの出力の数。1 として返されます。この層には単一の出力のみがあります。

データ型: double

この プロパティ は読み取り専用です。

出力名。{'out'} として返されます。この層には単一の出力のみがあります。

データ型: cell

すべて折りたたむ

avg1 という名前の平均プーリング層を作成します。

layer = averagePooling2dLayer(2,Name="avg1")
layer = 
  AveragePooling2DLayer with properties:

            Name: 'avg1'

   Hyperparameters
        PoolSize: [2 2]
          Stride: [1 1]
     PaddingMode: 'manual'
     PaddingSize: [0 0 0 0]
    PaddingValue: 0

Layer 配列に平均プーリング層を含めます。

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    averagePooling2dLayer(2)
    fullyConnectedLayer(10)
    softmaxLayer]
layers = 
  6x1 Layer array with layers:

     1   ''   Image Input           28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution       20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                  ReLU
     4   ''   2-D Average Pooling   2x2 average pooling with stride [1  1] and padding [0  0  0  0]
     5   ''   Fully Connected       10 fully connected layer
     6   ''   Softmax               softmax

プーリング領域が重なっていない平均プーリング層を作成します。

layer = averagePooling2dLayer(2,'Stride',2)
layer = 
  AveragePooling2DLayer with properties:

            Name: ''

   Hyperparameters
        PoolSize: [2 2]
          Stride: [2 2]
     PaddingMode: 'manual'
     PaddingSize: [0 0 0 0]
    PaddingValue: 0

矩形領域の高さと幅 (プール サイズ) はどちらも 2 です。イメージを垂直方向および水平方向に走査するステップ サイズ (ストライド) も 2 であるため、プーリング領域は重なりません。

Layer 配列に領域が重なっていない平均プーリング層を含めます。

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    averagePooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer]
layers = 
  6x1 Layer array with layers:

     1   ''   Image Input           28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution       20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                  ReLU
     4   ''   2-D Average Pooling   2x2 average pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected       10 fully connected layer
     6   ''   Softmax               softmax

プーリング領域が重なっている平均プーリング層を作成します。

layer = averagePooling2dLayer([3 2],'Stride',2)
layer = 
  AveragePooling2DLayer with properties:

            Name: ''

   Hyperparameters
        PoolSize: [3 2]
          Stride: [2 2]
     PaddingMode: 'manual'
     PaddingSize: [0 0 0 0]
    PaddingValue: 0

この層は、サイズ [3 2] のプーリング領域を作成し、各領域の 6 つの要素の平均を取ります。Stride に含まれる次元がそれぞれのプーリングの次元 PoolSize より小さいため、プーリング領域が重なります。

Layer 配列に領域が重なっている平均プーリング層を含めます。

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    averagePooling2dLayer([3 2],'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer]
layers = 
  6x1 Layer array with layers:

     1   ''   Image Input           28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution       20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                  ReLU
     4   ''   2-D Average Pooling   3x2 average pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected       10 fully connected layer
     6   ''   Softmax               softmax

アルゴリズム

すべて展開する

参照

[1] Nagi, J., F. Ducatelle, G. A. Di Caro, D. Ciresan, U. Meier, A. Giusti, F. Nagi, J. Schmidhuber, L. M. Gambardella. ''Max-Pooling Convolutional Neural Networks for Vision-based Hand Gesture Recognition''. IEEE International Conference on Signal and Image Processing Applications (ICSIPA2011), 2011.

拡張機能

バージョン履歴

R2016a で導入