Sensitivity Analysis and Monte Carlo Simulations using Simulink Design Optimization
When you are working with large and complex Simulink models, it is sometimes difficult to determine which model parameters impact behavior the most. Using Monte Carlo simulations, correlation techniques and design of experiments (DoE), Sensitivity Analysis allows you to determine which parameters have the greatest impact on your model.
In this webinar, we will use an example to demonstrate how to analyze and visualize your model's behavior across its design space using Monte Carlo simulations. This will help you identify which parameters impact characteristics such as step response times, energy consumption and component failure rates.
You can also use sensitivity analysis to improve design optimization performance. Using an example, we will see how you can identify a good initial point and a smaller set of parameters in a large model, allowing you to reduce the time taken for the optimization process.
Recorded: 14 Apr 2016
Featured Product
Simulink Design Optimization
Web サイトの選択
Web サイトを選択すると、翻訳されたコンテンツにアクセスし、地域のイベントやサービスを確認できます。現在の位置情報に基づき、次のサイトの選択を推奨します:
また、以下のリストから Web サイトを選択することもできます。
最適なサイトパフォーマンスの取得方法
中国のサイト (中国語または英語) を選択することで、最適なサイトパフォーマンスが得られます。その他の国の MathWorks のサイトは、お客様の地域からのアクセスが最適化されていません。
南北アメリカ
- América Latina (Español)
- Canada (English)
- United States (English)
ヨーロッパ
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
アジア太平洋地域
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)