MATLAB ヘルプ センター
Polyphase components of Laurent polynomial
Since R2021b
[E,O] = polyphase(P)
[E,O] = polyphase(P) returns the even part E and odd part O of the Laurent polynomial P.
E
O
P
example
collapse all
Create the Laurent polynomial b(z)=z3+3z2-1+2z-1.
b = laurentPolynomial(Coefficients=[1 3 0 -1 0 2],MaxOrder=3);
Use the polyphase function to obtain the even and odd parts of b(z). Use the helper function helperPrintLaurent to print the Laurent polynomials in algebraic form.
polyphase
helperPrintLaurent
[evenP,oddP] = polyphase(b); resE = helperPrintLaurent(evenP); disp(resE)
3*z - 1 + 2*z^(-1)
resO = helperPrintLaurent(oddP); disp(resO)
z^(2)
Confirm the identity E(z2)+z-1O(z2)==b(z), where E(z) and O(z) are the even and odd parts, respectively, of b(z).
evenPz2 = dyadup(evenP); oddPz2 = dyadup(oddP); lpz = laurentPolynomial(Coefficients=1,MaxOrder=-1); leftSide = evenPz2+(lpz*oddPz2); areEqual = (leftSide == b)
areEqual = logical 1
laurentPolynomial
Laurent polynomial, specified as a laurentPolynomial object.
Even part of the Laurent polynomial P, returned as a laurentPolynomial object. The polynomial E is such that:
E(z2) = [P(z) + P(-z)]/2.
Odd part of the Laurent polynomial P, returned as a laurentPolynomial object. The polynomial O is such that:
O(z2) = [P(z) - P(-z)]/ [ 2 z-1].
expand all
Introduced in R2021b
dyaddown
dyadup
laurentMatrix
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Web サイトの選択
Web サイトを選択すると、翻訳されたコンテンツにアクセスし、地域のイベントやサービスを確認できます。現在の位置情報に基づき、次のサイトの選択を推奨します:
また、以下のリストから Web サイトを選択することもできます。
最適なサイトパフォーマンスの取得方法
中国のサイト (中国語または英語) を選択することで、最適なサイトパフォーマンスが得られます。その他の国の MathWorks のサイトは、お客様の地域からのアクセスが最適化されていません。
南北アメリカ
ヨーロッパ
アジア太平洋地域
最寄りの営業オフィスへのお問い合わせ