sinh
Symbolic hyperbolic sine function
Syntax
Description
Examples
Hyperbolic Sine Function for Numeric and Symbolic Arguments
Depending on its arguments, sinh returns
floating-point or exact symbolic results.
Compute the hyperbolic sine function for these numbers. Because these numbers are not
symbolic objects, sinh returns floating-point results.
A = sinh([-2, -pi*i, pi*i/6, 5*pi*i/7, 3*pi*i/2])
A = -3.6269 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.5000i... 0.0000 + 0.7818i 0.0000 - 1.0000i
Compute the hyperbolic sine function for the numbers converted to symbolic objects. For
many symbolic (exact) numbers, sinh returns unresolved symbolic
calls.
symA = sinh(sym([-2, -pi*i, pi*i/6, 5*pi*i/7, 3*pi*i/2]))
symA = [ -sinh(2), 0, 1i/2, sinh((pi*2i)/7), -1i]
Use vpa to approximate symbolic results with floating-point
numbers:
vpa(symA)
ans = [ -3.6268604078470187676682139828013,... 0,... 0.5i,... 0.78183148246802980870844452667406i,... -1.0i]
Plot Hyperbolic Sine Function
Plot the hyperbolic sine function on the interval from to .
syms x fplot(sinh(x),[-pi pi]) grid on

Handle Expressions Containing Hyperbolic Sine Function
Many functions, such as diff,
int, taylor, and rewrite,
can handle expressions containing sinh.
Find the first and second derivatives of the hyperbolic sine function:
syms x diff(sinh(x), x) diff(sinh(x), x, x)
ans = cosh(x) ans = sinh(x)
Find the indefinite integral of the hyperbolic sine function:
int(sinh(x), x)
ans = cosh(x)
Find the Taylor series expansion of sinh(x):
taylor(sinh(x), x)
ans = x^5/120 + x^3/6 + x
Rewrite the hyperbolic sine function in terms of the exponential function:
rewrite(sinh(x), 'exp')
ans = exp(x)/2 - exp(-x)/2
Input Arguments
Version History
Introduced before R2006a