jacobiDC
Jacobi DC elliptic function
Syntax
Description
jacobiDC(
returns the Jacobi DC Elliptic Function of
u
,m
)u
and m
. If u
or
m
is an array, then jacobiDC
acts
element-wise.
Examples
Calculate Jacobi DC Elliptic Function for Numeric Inputs
jacobiDC(2,1)
ans = 1
Call jacobiDC
on array inputs.
jacobiDC
acts element-wise when
u
or m
is an array.
jacobiDC([2 1 -3],[1 2 3])
ans = 1.0000 0.4197 -0.0056
Calculate Jacobi DC Elliptic Function for Symbolic Numbers
Convert numeric input to symbolic form using
sym
, and find the Jacobi DC elliptic function. For
symbolic input where u = 0
or m = 0
or
1
,jacobiDC
returns exact symbolic
output.
jacobiDC(sym(2),sym(1))
ans = 1
Show that for other values of u
or
m
, jacobiDC
returns an unevaluated
function call.
jacobiDC(sym(2),sym(3))
ans = jacobiDC(2, 3)
Find Jacobi DC Elliptic Function for Symbolic Variables or Expressions
For symbolic variables or expressions,
jacobiDC
returns the unevaluated function call.
syms x y f = jacobiDC(x,y)
f = jacobiDC(x, y)
Substitute values for the variables by using subs
,
and convert values to double by using double
.
f = subs(f, [x y], [3 5])
f = jacobiDC(3, 5)
fVal = double(f)
fVal = 0.9981
Calculate f
to higher precision using
vpa
.
fVal = vpa(f)
fVal = 0.99805623285568333815968501058428
Plot Jacobi DC Elliptic Function
Plot the Jacobi DC elliptic function using fcontour
. Set u
on the x-axis and m
on the y-axis by using the symbolic function f
with the variable order (u,m)
. Fill plot contours by setting Fill
to on
.
syms f(u,m) f(u,m) = jacobiDC(u,m); fcontour(f,'Fill','on') title('Jacobi DC Elliptic Function') xlabel('u') ylabel('m')
Input Arguments
u
— Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression
Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.
m
— Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression
Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.
More About
Jacobi DC Elliptic Function
The Jacobi DC elliptic function is
dc(u,m) = dn(u,m)/cn(u,m)
where dn and cn are the respective Jacobi elliptic functions.
The Jacobi elliptic functions are meromorphic and doubly periodic in their first
argument with periods 4K(m) and 4iK'(m), where K is the complete elliptic integral of the first kind, implemented
as ellipticK
.
Version History
Introduced in R2017b
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)