plotResiduals
Plot residuals for each response, using time, group, or prediction as x-axis
Description
plotResiduals(
plots the residuals for each response, using the time, group, or model predictions
as the x-axis as specified by the argument resultsObj
,type
)type
.
Examples
Estimate Two-Compartment PK Parameters
Load the sample data set.
load data10_32R.mat gData = groupedData(data); gData.Properties.VariableUnits = ["","hour","milligram/liter","milligram/liter"];
Create a two-compartment PK model.
pkmd = PKModelDesign; pkc1 = addCompartment(pkmd,"Central"); pkc1.DosingType = "Infusion"; pkc1.EliminationType = "linear-clearance"; pkc1.HasResponseVariable = true; pkc2 = addCompartment(pkmd,"Peripheral"); model = construct(pkmd); configset = getconfigset(model); configset.CompileOptions.UnitConversion = true; responseMap = ["Drug_Central = CentralConc","Drug_Peripheral = PeripheralConc"];
Provide model parameters to estimate.
paramsToEstimate = ["log(Central)","log(Peripheral)","Q12","Cl_Central"]; estimatedParam = estimatedInfo(paramsToEstimate,'InitialValue',[1 1 1 1]);
Assume every individual receives an infusion dose at time = 0, with a total infusion amount of 100 mg at a rate of 50 mg/hour.
dose = sbiodose("dose","TargetName","Drug_Central"); dose.StartTime = 0; dose.Amount = 100; dose.Rate = 50; dose.AmountUnits = "milligram"; dose.TimeUnits = "hour"; dose.RateUnits = "milligram/hour";
Estimate model parameters. By default, the function estimates a set of parameter for each individual (unpooled fit).
fitResults = sbiofit(model,gData,responseMap,estimatedParam,dose);
Plot the results.
plot(fitResults);
Plot all groups in one plot.
plot(fitResults,"PlotStyle","one axes");
Change some axes properties.
s = struct; s.Properties.XGrid = "on"; s.Properties.YGrid = "on"; plot(fitResults,"PlotStyle","one axes","AxesStyle",s);
Compare the model predictions to the actual data.
plotActualVersusPredicted(fitResults)
Use boxplot
to show the variation of estimated model parameters.
boxplot(fitResults)
Plot the distribution of residuals. This normal probability plot shows the deviation from normality and the skewness on the right tail of the distribution of residuals. The default (constant) error model might not be the correct assumption for the data being fitted.
plotResidualDistribution(fitResults)
Plot residuals for each response using the model predictions on x-axis.
plotResiduals(fitResults,"Predictions")
Get the summary of the fit results. stats.Name
contains the name for each table from stats.Table
, which contains a list of tables with estimated parameter values and fit quality statistics.
stats = summary(fitResults); stats.Name
ans = 'Unpooled Parameter Estimates'
ans = 'Statistics'
ans = 'Unpooled Beta'
ans = 'Residuals'
ans = 'Covariance Matrix'
ans = 'Error Model'
stats.Table
ans=3×9 table
Group Central Estimate Central StandardError Peripheral Estimate Peripheral StandardError Q12 Estimate Q12 StandardError Cl_Central Estimate Cl_Central StandardError
_____ ________________ _____________________ ___________________ ________________________ ____________ _________________ ___________________ ________________________
{'1'} 1.422 0.12334 1.5619 0.36355 0.47163 0.15196 0.5291 0.036978
{'2'} 1.8322 0.019672 5.3364 0.65327 0.2764 0.030799 0.86035 0.026257
{'3'} 1.6657 0.038529 5.5632 0.37063 0.78361 0.058657 1.0233 0.027311
ans=3×7 table
Group AIC BIC LogLikelihood DFE MSE SSE
_____ _______ _______ _____________ ___ ________ _______
{'1'} 60.961 64.051 -26.48 12 2.138 25.656
{'2'} -7.8379 -4.7475 7.9189 12 0.029012 0.34814
{'3'} -1.4336 1.6567 4.7168 12 0.043292 0.5195
ans=3×9 table
Group Central Estimate Central StandardError Peripheral Estimate Peripheral StandardError Q12 Estimate Q12 StandardError Cl_Central Estimate Cl_Central StandardError
_____ ________________ _____________________ ___________________ ________________________ ____________ _________________ ___________________ ________________________
{'1'} 0.35208 0.086736 0.44589 0.23277 0.47163 0.15196 0.5291 0.036978
{'2'} 0.60551 0.010737 1.6746 0.12242 0.2764 0.030799 0.86035 0.026257
{'3'} 0.51027 0.02313 1.7162 0.066621 0.78361 0.058657 1.0233 0.027311
ans=24×4 table
ID Time CentralConc PeripheralConc
__ ____ ___________ ______________
1 0 0 0
1 1 0.10646 -0.74394
1 4 1.3745 1.2726
1 8 -0.68825 -4.2435
1 12 0.67383 0.21806
1 18 0.88823 1.0269
1 24 0.48941 0.66755
1 36 0.13632 0.22948
2 0 0 0
2 1 -0.026731 -0.058311
2 4 -0.033299 -0.20544
2 8 -0.20466 0.20696
2 12 -0.12223 0.045409
2 18 0.041224 0.33883
2 24 -0.059498 0.0036257
2 36 -0.051645 0.27616
⋮
ans=12×6 table
Group Parameters log(Central) log(Peripheral) Q12 Cl_Central
_____ ___________________ ____________ _______________ ___________ ___________
{'1'} {'log(Central)' } 0.015213 -0.022539 -0.0086672 0.001159
{'1'} {'log(Peripheral)'} -0.022539 0.13217 0.045746 -0.0073135
{'1'} {'Q12' } -0.0086672 0.045746 0.023092 -0.0021484
{'1'} {'Cl_Central' } 0.001159 -0.0073135 -0.0021484 0.0013674
{'2'} {'log(Central)' } 0.00038701 -0.002161 -0.00010177 9.7448e-05
{'2'} {'log(Peripheral)'} -0.002161 0.42676 0.019101 -0.015755
{'2'} {'Q12' } -0.00010177 0.019101 0.00094857 -0.00073328
{'2'} {'Cl_Central' } 9.7448e-05 -0.015755 -0.00073328 0.00068942
{'3'} {'log(Central)' } 0.0014845 -0.0054648 -0.0013216 0.00016639
{'3'} {'log(Peripheral)'} -0.0054648 0.13737 0.016903 -0.0072722
{'3'} {'Q12' } -0.0013216 0.016903 0.0034406 -0.00082538
{'3'} {'Cl_Central' } 0.00016639 -0.0072722 -0.00082538 0.00074587
ans=3×5 table
Group Response ErrorModel a b
_____ __________ ____________ _______ ___
{'1'} {0x0 char} {'constant'} 1.2663 NaN
{'2'} {0x0 char} {'constant'} 0.14751 NaN
{'3'} {0x0 char} {'constant'} 0.18019 NaN
Input Arguments
resultsObj
— Estimation results
OptimResults
object | NLINResults
object | vector of results objects
Estimation results, specified as an OptimResults object
,
NLINResults object
, or a
vector of results object which contains estimation results returned by
sbiofit
.
type
— x-axis option for residual plot
character vector | string
X-axis option for the residual plot, specified as a character vector or
string that must be one of the following: 'Time'
,
'Group'
, or 'Predictions'
.
Version History
Introduced in R2014a
See Also
MATLAB コマンド
次の MATLAB コマンドに対応するリンクがクリックされました。
コマンドを MATLAB コマンド ウィンドウに入力して実行してください。Web ブラウザーは MATLAB コマンドをサポートしていません。
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)