Main Content


[1] Boyd, S.P., El Ghaoui, L., Feron, E., and Balakrishnan, V., Linear Matrix Inequalities in Systems and Control Theory, Philadelphia, PA, SIAM, 1994.

[2] Dorato, P. (editor), Robust Control, New York, IEEE Press, 1987.

[3] Dorato, P., and Yedavalli, R.K. (editors), Recent Advances in Robust Control, New York, IEEE Press, 1990.

[4] Doyle, J.C., and Stein, G., “Multivariable Feedback Design: Concepts for a Classical/Modern Synthesis,” IEEE Trans. on Automat. Contr., 1981, AC-26(1), pp. 4-16.

[5] El Ghaoui, L., and Niculescu, S., Recent Advances in LMI Theory for Control, Philadelphia, PA, SIAM, 2000.

[6] Lehtomaki, N.A., Sandell, Jr., N.R., and Athans, M., “Robustness Results in Linear-Quadratic Gaussian Based Multivariable Control Designs,” IEEE Trans. on Automat. Contr., Vol. AC-26, No. 1, Feb. 1981, pp. 75-92.

[7] Safonov, M.G., Stability and Robustness of Multivariable Feedback Systems, Cambridge, MA, MIT Press, 1980.

[8] Safonov, M.G., Laub, A.J., and Hartmann, G., “Feedback Properties of Multivariable Systems: The Role and Use of Return Difference Matrix,” IEEE Trans. of Automat. Contr., 1981, AC-26(1), pp. 47-65.

[9] Safonov, M.G., Chiang, R.Y., and Flashner, H., “H Control Synthesis for a Large Space Structure,” Proc. of American Contr. Conf., Atlanta, GA, June 15-17, 1988.

[10] Safonov, M.G., and Chiang, R.Y., “CACSD Using the State-Space L Theory — A Design Example,” IEEE Trans. on Automatic Control, 1988, AC-33(5), pp. 477-479.

[11] Sanchez-Pena, R.S., and Sznaier, M., Robust Systems Theory and Applications, New York, Wiley, 1998.

[12] Skogestad, S., and Postlethwaite, I., Multivariable Feedback Control, New York, Wiley, 1996.

[13] Wie, B., and Bernstein, D.S., “A Benchmark Problem for Robust Controller Design,” Proc. American Control Conf., San Diego, CA, May 23-25, 1990; also Boston, MA, June 26-28, 1991.

[14] Zhou, K., Doyle, J.C., and Glover, K., Robust and Optimal Control, Englewood Cliffs, NJ, Prentice Hall, 1996.