# gammaml

Calculate load reflection coefficient of two-port network

## Description

example

coefficient = gammaml(s_params) calculates the load reflection coefficient of a two-port network required for simultaneous conjugate match.

example

coefficient = gammaml(hs) calculates the load reflection coefficient of the two-port network represented by the S-parameter object hs.

## Examples

collapse all

Calculate the load reflection coefficient using network data from a file

s_params = ckt.NetworkData.Data;
coefficient = gammaml(s_params);

Define S-parameters object specified from a file.

s_params = sparameters('default.s2p');

Calculate the load reflection coefficient using the gammaml function.

coefficient = gammaml(s_params)
coefficient = 191×1 complex

-0.0741 + 0.3216i
-0.0751 + 0.3292i
-0.0763 + 0.3365i
-0.0776 + 0.3435i
-0.0791 + 0.3502i
-0.0807 + 0.3564i
-0.0825 + 0.3619i
-0.0843 + 0.3668i
-0.0862 + 0.3709i
-0.0882 + 0.3741i
⋮

## Input Arguments

collapse all

Two-port S-parameters, specified as a complex 2-by-2-by-M array. M is the number of two-port S-parameters.

Data Types: double

Two-port network, specified as an S-parameter object.

Data Types: function_handle

## Output Arguments

collapse all

Load reflection coefficient, returned as a M element complex vector.

## Algorithms

The function calculates coefficient using the equation

${\Gamma }_{ML}=\frac{{B}_{2}±\sqrt{{B}_{2}{}^{2}-4|{C}_{2}{}^{2}|}}{2{C}_{2}}$

where

$\begin{array}{c}{B}_{2}=1-|{S}_{11}{}^{2}|+|{S}_{22}{}^{2}|-|{\Delta }^{2}|\\ {C}_{2}={S}_{22}-\Delta \cdot {S}_{11}^{*}\\ \Delta ={S}_{11}{S}_{22}-{S}_{12}{S}_{21}\end{array}$

## Version History

Introduced before R2006a