Documentation

# pdecont

Shorthand command for contour plot

This page describes the legacy workflow. New features might not be compatible with the legacy workflow.

## Syntax

```pdecont(p,t,u)
pdecont(p,t,u,n)
pdecont(p,t,u,v)
h = pdecont(p,t,u)
h = pdecont(p,t,u,n)
h = pdecont(p,t,u,v)
```

## Description

`pdecont(p,t,u)` draws 10 level curves of the PDE node or triangle data `u`. ```h = pdecont(p,t,u)``` additionally returns handles to the drawn axes objects.

If `u` is a column vector, node data is assumed. If `u` is a row vector, triangle data is assumed.

The geometry of the PDE problem is given by the mesh data `p` and t. For details on the mesh data representation, see Mesh Data.

`pdecont(p,t,u,n)` plots using `n` levels.

`pdecont(p,t,u,v)` plots using the levels specified by `v`.

This command is just shorthand for the call

```pdeplot(p,[],t,'XYData',u,'XYStyle','off','Contour',... 'on','Levels',n,'ColorBar','off'); ```

If you want to have more control over your contour plot, use `pdeplot` instead of `pdecont`.

## Examples

collapse all

Plot the contours of the solution to the equation $-\Delta u=1$ over the geometry defined by the L-shaped membrane. Use Dirichlet boundary conditions $u=0$ on $\partial \Omega$.

```[p,e,t] = initmesh('lshapeg'); [p,e,t] = refinemesh('lshapeg',p,e,t); u = assempde('lshapeb',p,e,t,1,0,1); pdecont(p,t,u)```  