Implement Hardware-Efficient Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Tikhonov Regularization
This example shows how to use the Complex Partial-Systolic Matrix Solve Using QR Decomposition block to solve the regularized least-squares matrix equation
where A is an m-by-n matrix with m n, B is n-by-p, X is n-by-p, , and is a regularization parameter.
Define System Parameters
Define the matrix attributes and system parameters for this example.
m
is the number of rows in matrix A
. In a problem such as beamforming or direction finding, m
corresponds to the number of samples that are integrated over.
m = 100;
n
is the number of columns in matrix A
and rows in matrices B and X
. In a least-squares problem, m
is greater than n
, and usually m
is much larger than n
. In a problem such as beamforming or direction finding, n
corresponds to the number of sensors.
n = 10;
p
is the number of columns in matrices B
and X
. It corresponds to simultaneously solving a system with p
right-hand sides.
p = 1;
In this example, set the rank of matrix A
to be less than the number of columns. In a problem such as beamforming or direction finding, corresponds to the number of signals impinging on the sensor array.
rankA = 3;
precisionBits
defines the number of bits of precision required for the matrix solve. Set this value according to system requirements.
precisionBits = 32;
Small, positive values of the regularization parameter can improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared error when compared to least-squares estimates.
regularizationParameter = 0.01;
In this example, complex-valued matrices A
and B
are constructed such that the magnitude of the real and imaginary parts of their elements is less than or equal to one, so the maximum possible absolute value of any element is . Your own system requirements will define what those values are. If you don't know what they are, and A
and B
are fixed-point inputs to the system, then you can use the upperbound
function to determine the upper bounds of the fixed-point types of A
and B
.
max_abs_A
is an upper bound on the maximum magnitude element of A.
max_abs_A = sqrt(2);
max_abs_B
is an upper bound on the maximum magnitude element of B.
max_abs_B = sqrt(2);
Thermal noise standard deviation is the square root of thermal noise power, which is a system parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set thermalNoiseStandardDeviation
to the equivalent of -50 dB noise power.
thermalNoiseStandardDeviation = sqrt(10^(-50/10))
thermalNoiseStandardDeviation = 0.0032
The quantization noise standard deviation is a function of the required number of bits of precision. Use fixed.complexQuantizationNoiseStandardDeviation
to compute this. See that it is less than thermalNoiseStandardDeviation
.
quantizationNoiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation(precisionBits)
quantizationNoiseStandardDeviation = 9.5053e-11
Compute Fixed-Point Types
In this example, assume that the designed system matrix does not have full rank (there are fewer signals of interest than number of columns of matrix ), and the measured system matrix has additive thermal noise that is larger than the quantization noise. The additive noise makes the measured matrix have full rank.
Set .
noiseStandardDeviation = thermalNoiseStandardDeviation;
Use the fixed.complexQlessQRMatrixSolveFixedpointTypes
function to compute fixed-point types.
T = fixed.complexQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
precisionBits,noiseStandardDeviation,[],regularizationParameter)
T = struct with fields: A: [0×0 embedded.fi] B: [0×0 embedded.fi] X: [0×0 embedded.fi]
T.A
is the type computed for transforming to in-place so that it does not overflow.
T.A
ans = [] DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 39 FractionLength: 32
T.B
is the type computed for B so that it does not overflow.
T.B
ans = [] DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 35 FractionLength: 32
T.X
is the type computed for the solution so that there is a low probability that it overflows.
T.X
ans = [] DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 50 FractionLength: 32
Use the Specified Types to Solve the Matrix Equation
Create random matrices A
and B
such that rankA=rank(A)
. Add random measurement noise to A
which will make it become full rank.
rng('default');
[A,B] = fixed.example.complexRandomQlessQRMatrices(m,n,p,rankA);
A = A + fixed.example.complexNormalRandomArray(0,noiseStandardDeviation,m,n);
Cast the inputs to the types determined by fixed.complexQlessQRMatrixSolveFixedpointTypes
. Quantizing to fixed-point is equivalent to adding random noise.
A = cast(A,'like',T.A); B = cast(B,'like',T.B); OutputType = fixed.extractNumericType(T.X);
Open the Model
model = 'ComplexPartialSystolicQlessQRMatrixSolveModel';
open_system(model);
Set Variables in the Model Workspace
Use the helper function setModelWorkspace
to add the variables defined above to the model workspace. These variables correspond to the block parameters for the Complex Burst Matrix Solve Using QR Decomposition block.
numOutputs = 1; % Number of recorded outputs aDelay = 1; % Delay of clock cycles between feeding in rows of A bDelay = 1; % Delay of clock cycles between feeding in B matrices fixed.example.setModelWorkspace(model,'A',A,'B',B,'m',m,'n',n,'p',p,... 'regularizationParameter',regularizationParameter,... 'aDelay',aDelay,'bDelay',bDelay,... 'numOutputs',numOutputs,'OutputType',OutputType);
Simulate the Model
out = sim(model);
Construct the Solution from the Output Data
The Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition block outputs matrix X at each time step. When a valid result matrix is output, the block sets validOut
to true.
X = out.X;
Verify the Accuracy of the Output
Verify that the relative error between the fixed-point output and builtin MATLAB® in double-precision floating-point is small.
A_lambda = double([regularizationParameter*eye(n);A]); X_double = (A_lambda'*A_lambda)\double(B); relativeError = norm(X_double - double(X))/norm(X_double)
relativeError = 5.4974e-06
Suppress mlint
warnings in this file.
%#ok<*NASGU> %#ok<*ASGLU> %#ok<*NOPTS>
See Also
Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition