Main Content

固定小数点の関数近似

固定小数点ライブラリ関数が使用できない場合、固定小数点アプリケーションにはその関数の近似が必要です。多くの場合、内挿されたルックアップ テーブルを使用して指定範囲の関数近似を保存します。

この例では、ルックアップ テーブルを使用して、指定された入力範囲において関数 y = sin(2*pi*x) を近似する方法を示しています。

参考:FunctionApproximation.Problem、FunctionApproximation.Options

この例では、入力は符号なしの 16 ビット データ型 fixdt(0,16,16)、出力は符号付きの 16 ビット データ型 fixdt(1,16,14) を使用します。

この例の目的は、2 進小数点の右側 8 ビットまで正確な近似を作成することです。これは、最悪の場合の誤差が 2^(-8) 未満になるようにするということを意味します。

この目標を満たすルックアップ テーブルのデータ ポイント集合は多数あります。メモリ使用量や計算速度といった目標に応じて、異なる実装を選択できます。この例では、最小のデータ ポイント数でこの精度目標を満たすソリューションを見つけます。

関数の近似

FunctionApproximation.Options オブジェクトを使用して精度と語長の制約を指定します。

options = FunctionApproximation.Options();
options.AbsTol = 2^-8;
options.RelTol = 0;
options.WordLengths = [8 16 32];
options.MemoryUnits = 'bytes';
options.OnCurveTableValues = true;

近似する関数と入力範囲、データ型を FunctionApproximation.Problem オブジェクトで指定します。

functionToApproximate = @(x) sin(2*pi*x);

problem = FunctionApproximation.Problem(functionToApproximate, 'Options', options);
problem.InputTypes = numerictype(0,16,16);
problem.InputLowerBounds = 0;
problem.InputUpperBounds = 0.25;
problem.OutputType = numerictype(1,16,14);

% Create a LUT solution
solution = solve(problem);

% Change breakpoint specification to EvenPow2Spacing and create a LUT
% solution again
problem.Options.BreakpointSpecification = 'EvenPow2Spacing';
bestEvenPow2SpacingSolution = solve(problem);
|  ID | Memory (bytes) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) | 
|   0 |     4.0000e+00 |        0 |          2 |               8 |            8 |             EvenSpacing |     3.906250e-03, 2.105137e-01 |
|   1 |     1.9000e+01 |        0 |         17 |               8 |            8 |             EvenSpacing |     3.906250e-03, 4.257483e-03 |
|   2 |     3.5000e+01 |        1 |         33 |               8 |            8 |             EvenSpacing |     3.906250e-03, 3.848536e-03 |
|   3 |     2.8000e+01 |        1 |         26 |               8 |            8 |             EvenSpacing |     3.906250e-03, 3.768435e-03 |
|   4 |     2.4000e+01 |        1 |         22 |               8 |            8 |             EvenSpacing |     3.906250e-03, 3.596819e-03 |
|   5 |     2.1000e+01 |        1 |         19 |               8 |            8 |             EvenSpacing |     3.906250e-03, 3.589720e-03 |
|   6 |     1.5000e+01 |        0 |         13 |               8 |            8 |             EvenSpacing |     3.906250e-03, 7.812500e-03 |
|   7 |     1.7000e+01 |        1 |         15 |               8 |            8 |             EvenSpacing |     3.906250e-03, 3.824648e-03 |
|   8 |     1.2000e+01 |        0 |         10 |               8 |            8 |             EvenSpacing |     3.906250e-03, 4.677033e-03 |
|   9 |     1.1000e+01 |        0 |          9 |               8 |            8 |             EvenSpacing |     3.906250e-03, 6.957420e-03 |
|  10 |     1.4000e+01 |        1 |         12 |               8 |            8 |             EvenSpacing |     3.906250e-03, 3.687388e-03 |
|  11 |     1.3000e+01 |        0 |         11 |               8 |            8 |             EvenSpacing |     3.906250e-03, 7.812500e-03 |
|  12 |     9.0000e+00 |        0 |          7 |               8 |            8 |             EvenSpacing |     3.906250e-03, 7.818172e-03 |
|  13 |     6.0000e+00 |        0 |          2 |              16 |            8 |             EvenSpacing |     3.906250e-03, 2.105137e-01 |
|  14 |     1.3000e+01 |        0 |          9 |              16 |            8 |             EvenSpacing |     3.906250e-03, 6.957420e-03 |
|  15 |     6.0000e+00 |        0 |          2 |               8 |           16 |             EvenSpacing |     3.906250e-03, 2.105137e-01 |
|  16 |     4.0000e+00 |        0 |          2 |               8 |            8 |         EvenPow2Spacing |     3.906250e-03, 2.105137e-01 |
|  17 |     1.1000e+01 |        0 |          9 |               8 |            8 |         EvenPow2Spacing |     3.906250e-03, 6.957420e-03 |
|  18 |     6.0000e+00 |        0 |          2 |              16 |            8 |         EvenPow2Spacing |     3.906250e-03, 2.105137e-01 |
|  19 |     1.3000e+01 |        0 |          9 |              16 |            8 |         EvenPow2Spacing |     3.906250e-03, 6.957420e-03 |
|  20 |     6.0000e+00 |        0 |          2 |               8 |           16 |         EvenPow2Spacing |     3.906250e-03, 2.105137e-01 |
|  21 |     8.0000e+00 |        0 |          2 |              16 |           16 |         EvenPow2Spacing |     3.906250e-03, 2.105137e-01 |
|  22 |     1.4000e+01 |        1 |          7 |               8 |            8 |          ExplicitValues |     3.906250e-03, 3.830054e-03 |
|  23 |     3.5000e+01 |        1 |         33 |               8 |            8 |         EvenPow2Spacing |     3.906250e-03, 3.848536e-03 |

Best Solution
|  ID | Memory (bytes) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) |
|  10 |     1.4000e+01 |        1 |         12 |               8 |            8 |             EvenSpacing |     3.906250e-03, 3.687388e-03 |

|  ID | Memory (bytes) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) | 
|   0 |     4.0000e+00 |        0 |          2 |               8 |            8 |         EvenPow2Spacing |     3.906250e-03, 2.105137e-01 |
|   1 |     1.9000e+01 |        0 |         17 |               8 |            8 |         EvenPow2Spacing |     3.906250e-03, 4.257483e-03 |
|   2 |     3.5000e+01 |        1 |         33 |               8 |            8 |         EvenPow2Spacing |     3.906250e-03, 3.848536e-03 |
|   3 |     1.1000e+01 |        0 |          9 |               8 |            8 |         EvenPow2Spacing |     3.906250e-03, 6.957420e-03 |
|   4 |     6.0000e+00 |        0 |          2 |              16 |            8 |         EvenPow2Spacing |     3.906250e-03, 2.105137e-01 |
|   5 |     2.1000e+01 |        0 |         17 |              16 |            8 |         EvenPow2Spacing |     3.906250e-03, 4.257483e-03 |
|   6 |     1.3000e+01 |        0 |          9 |              16 |            8 |         EvenPow2Spacing |     3.906250e-03, 6.957420e-03 |
|   7 |     6.0000e+00 |        0 |          2 |               8 |           16 |         EvenPow2Spacing |     3.906250e-03, 2.105137e-01 |
|   8 |     2.0000e+01 |        0 |          9 |               8 |           16 |         EvenPow2Spacing |     3.906250e-03, 4.856432e-03 |

Best Solution
|  ID | Memory (bytes) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) |
|   2 |     3.5000e+01 |        1 |         33 |               8 |            8 |         EvenPow2Spacing |     3.906250e-03, 3.848536e-03 |

ソリューションの確認

%The software returns several implementations that meet the requirements
%specified in the |FunctionApproximation.Problem| and
%|FunctionApproximation.Options| objects. You can explore these different
%implementations.

feasibleSolutions = solution.FeasibleSolutions;
tableDataVec = [feasibleSolutions.TableData];
evenSpacingSolutions = find([tableDataVec.IsEvenSpacing]);
unevenSpacingSolutions = find(~[tableDataVec.IsEvenSpacing]);

evenSolutionsMemoryUsage   = arrayfun(@(x) x.totalMemoryUsage(), feasibleSolutions(evenSpacingSolutions));
unevenSolutionsMemoryUsage = arrayfun(@(x) x.totalMemoryUsage(), feasibleSolutions(unevenSpacingSolutions));

bestEvenSpacingSolution  = feasibleSolutions(evenSpacingSolutions(evenSolutionsMemoryUsage == min(evenSolutionsMemoryUsage)));
bestUnevenSpacingSolution = feasibleSolutions(unevenSpacingSolutions(unevenSolutionsMemoryUsage == min(unevenSolutionsMemoryUsage)));

xeven = bestEvenSpacingSolution.TableData.BreakpointValues{1};
yeven = bestEvenSpacingSolution.TableData.TableValues;

xuneven = bestUnevenSpacingSolution.TableData.BreakpointValues{1};
yuneven = bestUnevenSpacingSolution.TableData.TableValues;

xpow2 = bestEvenPow2SpacingSolution.TableData.BreakpointValues{1};
ypow2 = bestEvenPow2SpacingSolution.TableData.TableValues;

メモリ使用量の比較

ルックアップ テーブルで使用されるメモリを比較します。

memoryValues = [...
    totalMemoryUsage(bestEvenPow2SpacingSolution), ...
    totalMemoryUsage(bestEvenSpacingSolution), ...
    totalMemoryUsage(bestUnevenSpacingSolution)];

figure();
xTickLabels = {'Even pow2 spacing \newline(fastest)','Even spacing \newline(faster)','Uneven spacing \newline(fast)'};
hMemory = bar(memoryValues);
title('Comparison of memory usage obtained by different \newline breakpoint specification options');
hMemory.Parent.XTickLabel = xTickLabels;
hMemory.Parent.XTickLabelRotation = 45;
hMemory.Parent.YLabel.String = 'Memory (bytes)';
hMemory.Parent.Box = 'on';
hMemory.Parent.YGrid = 'on';

等間隔を使用する場合と不等間隔を使用する場合でテーブルが使用するメモリの量は同じですが、ポイントの数は異なります。これは、等間隔を使用するテーブルのブレークポイントを保存するときには、最初のポイントと間隔のみが保存されるためです。対照的に、不等間隔を使用するテーブルでは、すべてのブレークポイントが保存されます。

pow2 等間隔では、等間隔の場合に保存されるポイントの倍を超えるポイントが保存されます。メモリ使用量の観点では、pow2 等間隔はこの関数にとっては最も不適当です。ただし、pow2 等間隔での計算は乗算ではなく算術シフトを使用して実行され、それによってより速い実行時間につながります。

ソリューションと元の関数との比較

pow2 等間隔を使用するソリューションを元の関数と比較します。

[~, hEvenPow2Spacing] = compare(bestEvenPow2SpacingSolution);
hEvenPow2Spacing.Children(4).Title.String = [hEvenPow2Spacing.Children(4).Title.String ' (Even pow2 spacing)'];

等間隔を使用するソリューションを元の関数と比較します。

[~, hEvenSpacing] = compare(bestEvenSpacingSolution);
hEvenSpacing.Children(4).Title.String = [hEvenSpacing.Children(4).Title.String ' (Even spacing)'];

不等間隔を使用するソリューションを元の関数と比較します。

[~, hUnevenSpacing] = compare(bestUnevenSpacingSolution);
hUnevenSpacing.Children(4).Title.String = [hUnevenSpacing.Children(4).Title.String ' (Uneven spacing)'];

Simulink® モデルでの近似の使用

この近似を Simulink® Lookup Table (n-D) ブロックで直接使用できます。

modelName = 'fxpdemo_approx';
open_system(modelName)

modelWorkspace = get_param(modelName, 'ModelWorkspace');

modelWorkspace.assignin('xevenFirstPoint'     , xeven(1)  );
modelWorkspace.assignin('xevenSpacing'        , diff(xeven(1:2))  );
modelWorkspace.assignin('yeven'               , yeven  );
modelWorkspace.assignin('TableDTeven'         , bestEvenSpacingSolution.TableData.TableDataType      );
modelWorkspace.assignin('BreakpointDTeven'    , bestEvenSpacingSolution.TableData.BreakpointDataTypes);

modelWorkspace.assignin('xuneven'             , xuneven);
modelWorkspace.assignin('yuneven'             , yuneven);
modelWorkspace.assignin('TableDTuneven'       , bestUnevenSpacingSolution.TableData.TableDataType      );
modelWorkspace.assignin('BreakpointDTuneven'  , bestUnevenSpacingSolution.TableData.BreakpointDataTypes);

modelWorkspace.assignin('xpow2FirstPoint'     , xpow2(1)  );
modelWorkspace.assignin('xpow2Spacing'        , diff(xpow2(1:2))  );
modelWorkspace.assignin('ypow2'               , ypow2  );
modelWorkspace.assignin('TableDTpow2'         , bestEvenPow2SpacingSolution.TableData.TableDataType      );
modelWorkspace.assignin('BreakpointDTpow2'    , bestEvenPow2SpacingSolution.TableData.BreakpointDataTypes);

set_param(modelName, 'Dirty', 'off');

概要

モデル fxpdemo_approx では、理想関数と 3 つの近似が使用されます。Simulink® Coder™ がインストールされている場合、モデルのコードを生成できます。インライン パラメーターが ON の場合、不均等な間隔、等間隔、および 2 のべき乗の間隔の実装において効率に大きな違いがあることが、生成されるコードに示されます。

sim(modelName)

クリーン アップ

close_system(modelName, 0);