Inference and Learning from Data: Foundations, Volume 1
Ali H. Sayed, École Polytechnique Fédérale de Lausanne, Switzerland University of California, Los Angeles, USA
Cambridge University Press, 2023
ISBN: 9781009218122;
Language: English
This extraordinary three-volume work, written in an engaging and rigorous style by a world authority in the field, provides an accessible, comprehensive introduction to the full spectrum of mathematical and statistical techniques underpinning contemporary methods in data-driven learning and inference.
This first volume, Inference and Learning from Data, Foundations, introduces core topics in inference and learning, such as matrix theory, linear algebra, random variables, convex optimization and stochastic optimization, and prepares students for studying their practical application in later volumes. A consistent structure and pedagogy is employed throughout this volume to reinforce student understanding, with over 600 end-of-chapter problems (including solutions for instructors), 100 figures, 180 solved examples, datasets and downloadable MATLAB code. Supported by sister volumes Inference and Learning, and unique in its scale and depth, this textbook sequence is ideal for early-career researchers and graduate students across many courses in signal processing, machine learning, statistical analysis, data science and inference.
Web サイトの選択
Web サイトを選択すると、翻訳されたコンテンツにアクセスし、地域のイベントやサービスを確認できます。現在の位置情報に基づき、次のサイトの選択を推奨します:
また、以下のリストから Web サイトを選択することもできます。
最適なサイトパフォーマンスの取得方法
中国のサイト (中国語または英語) を選択することで、最適なサイトパフォーマンスが得られます。その他の国の MathWorks のサイトは、お客様の地域からのアクセスが最適化されていません。
南北アメリカ
- América Latina (Español)
- Canada (English)
- United States (English)
ヨーロッパ
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)