Main Content

addEvaluationParameter

Adds performance goal for sort, pass, or fail matching network design

Description

example

mnobjupdated = addEvaluationParameter(mnobj,parameter,comparison,targetdb,band,weight) adds a performance goal to an existing matching network and returns an updated matching network object.

Examples

collapse all

Create a dipole antenna and create the S-parameters of the antenna. This example requires Antenna Toolbox.

d       = dipole('Length', 0.103, 'Width',0.0022);
freq    = linspace(0.5e9,2.5e9,1001);
sd      = sparameters(d, freq);

Alternatively, load S-Parameters from the MAT file

% load('sparams_dipole.mat')

Create a matching network from the S-parameters.

n = matchingnetwork('LoadImpedance',sd,'Components',3,...
    'LoadedQ',7,'CenterFrequency',2e9);

Get the evaluation parameters of the network.

t = getEvaluationParameters(n)
t=1×6 table
    Parameter    Comparison     Goal               Band               Weight       Source    
    _________    __________    ______    _________________________    ______    _____________

     {'Gt'}        {'>'}       {[-3]}    {[1.8571e+09 2.1429e+09]}    {[1]}     {'Automatic'}

Plot the reflection coefficient and transducer gain of the matching network circuit 1 , at a frequency range of 1 GHz to 2.5 GHz.

rfplot(n, (1e9:0.001e9:2.5e9),1);

Figure Circuit 1 contains an axes. The axes with title Performance for Circuit 1 ('auto_6') (Passed) contains 3 objects of type line, rectangle. These objects represent Circuit 1: |gammain|, dB, Circuit 1: |Gt|, dB.

Add a new evaluation parameter to compare the transducer gain to have a cut-off of less than -10 dB. Use a frequency range of 0.5 GHz to 1.5 GHz. Plot the comparisons.

n = addEvaluationParameter(n, 'Gt', '<', -10, [0.5e9 1.5e9], 1);
t = getEvaluationParameters(n)
t=2×6 table
    Parameter    Comparison     Goal                Band               Weight          Source      
    _________    __________    _______    _________________________    ______    __________________

     {'Gt'}        {'>'}       {[ -3]}    {[1.8571e+09 2.1429e+09]}    {[1]}     {'Automatic'     }
     {'Gt'}        {'<'}       {[-10]}    {[ 500000000 1.5000e+09]}    {[1]}     {'User-specified'}

rfplot(n, (1e9:0.001e9:2.5e9),1);

Figure Circuit 1 contains an axes. The axes with title Performance for Circuit 1 ('auto_8') (Passed) contains 4 objects of type line, rectangle. These objects represent Circuit 1: |gammain|, dB, Circuit 1: |Gt|, dB.

Clear evaluation parameters.

n = clearEvaluationParameter(n,1);
t = getEvaluationParameters(n)
t=1×6 table
    Parameter    Comparison     Goal                Band              Weight          Source      
    _________    __________    _______    ________________________    ______    __________________

     {'Gt'}        {'<'}       {[-10]}    {[500000000 1.5000e+09]}    {[1]}     {'User-specified'}

Input Arguments

collapse all

Matching network, specified as a matchingnetwork object.

Data Types: char | string

Evaluation parameter to define targets for input reflection coefficients or transducer gain for matching networks when cascaded between source and load impedance, specified as 'gammain' or 'Gt'.

Data Types: char | string

Comparison to rank, pass, or fail matching networks, specified as '<' or '>'.

Data Types: char | string

Cut-off that determines a particular performance goal, specified as a scalar in dB. The targetdb is shaded when you use the rfplot function. The shade is green when the matching network meets the performance goal. The shade is red when the matching network does not meet the performance goal.

Data Types: double

Frequency range in which the performance goal or the specifications are applied to matching network, specified as a vector with each element in Hz.

Data Types: double

Weight factor of each performance goal when you specify more than one goal, specified as a scalar in the range of 0 to 1.

Data Types: double

Output Arguments

collapse all

Matching network updated according to evaluation parameters, returned as a matchingnetwork object.

Introduced in R2019a