waldtest
Wald test of model specification
Syntax
Description
h = waldtest(r,R,EstCov)
- If any input argument is a cell vector of length k > 1, then the other input arguments must be cell arrays of length k. - waldtest(- r,- R,- EstCov) treats each cell as a separate, independent test, and returns a vector of rejection decisions.
- If any input argument is a row vector, then the software returns output arguments as row vectors. 
Examples
Input Arguments
Output Arguments
More About
Tips
- Estimate unrestricted univariate linear time series models, such as - arimaor- garch, or time series regression models (- regARIMA) using- estimate. Estimate unrestricted multivariate linear time series models, such as- varmor- vecm, using- estimate.- estimatereturns parameter estimates and their covariance estimates, which you can process and use as inputs to- waldtest.
- If you cannot easily compute restricted parameter estimates, then use - waldtest. By comparison:- lratiotestrequires both restricted and unrestricted parameter estimates.
- lmtestrequires restricted parameter estimates.
 
Algorithms
- waldtestperforms multiple, independent tests when the restriction function vector, its Jacobian, and the unrestricted model parameter covariance matrix (- r,- R, and- EstCov, respectively) are equal-length cell vectors.- If - EstCovis the same for all tests, but- rvaries, then- waldtest“tests down” against multiple restricted models.
- If - EstCovvaries among tests, but- rdoes not, then- waldtest“tests up” against multiple unrestricted models.
- Otherwise, - waldtestcompares model specifications pair-wise.
 
- alphais nominal in that it specifies a rejection probability in the asymptotic distribution. The actual rejection probability is generally greater than the nominal significance.
- The Wald test rejection error is generally greater than the likelihood ratio and Lagrange multiplier test rejection errors. 
References
[1] Davidson, R. and J. G. MacKinnon. Econometric Theory and Methods. Oxford, UK: Oxford University Press, 2004.
[2] Godfrey, L. G. Misspecification Tests in Econometrics. Cambridge, UK: Cambridge University Press, 1997.
[3] Greene, W. H. Econometric Analysis. 6th ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2008.
[4] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press, 1994.
Version History
Introduced in R2009a

