Main Content

Effects of Custom Deep Learning Processor Parameters on Performance and Resource Utilization

Analyze how deep learning processor parameters affect deep learning network performance and bitstream resource utilization. Identify parameters that help improve performance and reduce resource utilization.

This table lists the deep learning processor parameters and their effects on performance and resource utilization.

Deep Learning Processor ParameterDeep Learning Processor ModuleParameter ActionEffect on PerformanceEffect on Resource Utilization
TargetFrequencyBase moduleIncrease target frequency.Improves performance.Marginal increase in lookup table (LUT) utilization.
ConvThreadNumberconvIncrease thread number.Improves performance.Increases resource utilization.
InputMemorySizeconvIncrease input memory size.Improves performance.To learn how to optimize your input memory size, see InputMemorySize and OutputMemorySize Optimization.
OutputMemorySizeconvIncrease output memory size.Improves performance.To learn how to optimize your output memory size, see InputMemorySize and OutputMemorySize Optimization.
FeatureSizeLimitconvIncrease feature size limit.None. This option allows the support for a fully connected (FC) layer with a larger feature number.Marginally increases resource utilization.
FCThreadNumberfcIncrease thread number.Improves performance.Increases resource utilization.
InputMemorySizefcIncrease input memory size.None. This option allows the support for a FC layer with a larger output activation.To learn how to optimize your input memory size, see InputMemorySize and OutputMemorySize Optimization.
OutputMemorySizefcIncrease output memory size.None. This option allows the support for a FC layer with a larger output activation.To learn how to optimize your output memory size, see InputMemorySize and OutputMemorySize Optimization.
InputMemorySizecustomIncrease input memory sizeMarginally increases performance.Increases Block RAM (BRAM) resource utilization.
OutputMemorySizecustomIncrease output memory sizeMarginally increases performance.Increases Block RAM (BRAM) resource utilization.
ProcessorDataTypeTop LevelChange data type to int8.Improves performance. There could be a drop in accuracy.Reduces resource utilization.

See Also

| | | |

Related Topics