Q-R decomposition with positive diagonals of R Matrix

Q-R decomposition with positive diagonals for a square random matrix
ダウンロード: 239
更新 2015/2/24

ライセンスの表示

In linear algebra, a QR decomposition (also called a QR factorization) of a matrix is a decomposition of a matrix A into a product A = QR of an orthogonal matrix Q and an upper triangular matrix R. QR decomposition is often used to solve the linear least squares problem, and is the basis for a particular eigen value algorithm, the QR algorithm. If A has n linearly independent columns, then the first n columns of Q form an orthonormal basis for the column space of A. More specifically, the first k columns of Q form an orthonormal basis for the span of the first k columns of A for any 1 ≤ k ≤ n. The fact that any column k of A only depends on the first k columns of Q is responsible for the triangular form of R.

引用

Gnaneswar Nadh satapathi (2025). Q-R decomposition with positive diagonals of R Matrix (https://www.mathworks.com/matlabcentral/fileexchange/49807-q-r-decomposition-with-positive-diagonals-of-r-matrix), MATLAB Central File Exchange. に取得済み.

MATLAB リリースの互換性
作成: R2006b
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
カテゴリ
Help Center および MATLAB AnswersLinear Algebra についてさらに検索
タグ タグを追加

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
バージョン 公開済み リリース ノート
1.2.0.0

Q-R decomposition for random matrix with positive diagonal elements

1.1.0.0

Positive diagonals of R matrix for a random input matrix

1.0.0.0